Browse > Article
http://dx.doi.org/10.5487/TR.2007.23.2.097

Toll-like Receptors in Host Defense and Immune Disorders  

Lee, Joo-Y. (Department of Life Science, Gwangju Institute of Science and Technology)
Publication Information
Toxicological Research / v.23, no.2, 2007 , pp. 97-105 More about this Journal
Abstract
Toll-like receptors (TLRs) playa crucial role in initiating and regulating innate and adaptive immune responses by detecting invading microbial pathogens. TLRs can also respond to non-microbial molecules derived from damaged tissue. Accumulating evidence suggests that deregulation of TLRs results in the dysfunction of immune system and ultimately increases the risk of many immune and inflammatory diseases including infectious diseases, allergy, and autoimmune diseases. Therefore, understanding how the immune system is controlled by TLRs will provide new insight to find the way to prevent or treat infectious diseases and immune disorders.
Keywords
Toll-like receptor; Immune dysfunction; Inflammation; Infection; Innate and Adaptive immunity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Alexopoulou, L., Holt, A.C., Medzhitov, R. and Flavell, R.A. (2001). Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature, 413, 732- 738
2 Ben-Ali, M., Barbouche, M.R., Bousnina, S., Chabbou, A. and Dellagi, K. (2004). Toll-like receptor 2 Arg677Trp polymorphism is associated with susceptibility to tuberculosis in Tunisian patients. Clin. Diagn. Lab. Immunol., 11, 625- 626
3 Brierley, M.M. and Fish, E.N. (2002). Review: IFN-alpha/beta receptor interactions to biologic outcomes: understanding the circuitry. J. Interferon. Cytokine. Res., 22, 835-845   DOI   ScienceOn
4 Cluff, C.W., Baldridge, J.R., Stover, A.G., Evans, J.T., Johnson, D.A., Lacy, M.J., Clawson, V.G., Yorgensen, V.M., Johnson, C.L., Livesay, M.T., Hershberg, R.M. and Persing, D.H. (2005). Synthetic toll-like receptor 4 agonists stimulate innate resistance to infectious challenge. Infect. Immun., 73, 3044-3052   DOI   ScienceOn
5 Hayashi, F., Smith, K.D., Ozinsky, A., Hawn, T.R., Yi, E.C., Goodlett, D.R., Eng, J.K., Akira, S., Underhill, D.M. and Aderem, A. (2001). The innate immune response to bacterial flagellin is mediated by Toll- like receptor 5. Nature, 410, 1099-1103   DOI   ScienceOn
6 Kaisho, T., Hoshino, K., Iwabe, T., Takeuchi, O., Yasui, T. and Akira, S. (2002). Endotoxin can induce MyD88-deficient dendritic cells to support T(h)2 cell differentiation. Int. Immunol., 14, 695-700   DOI   ScienceOn
7 Kariko, K., Ni, H., Capodici, J., Lamphier, M. and Weissman, D. (2004). mRNA is an endogenous ligand for Toll-like receptor 3. J. Biol. Chem., 279, 12542-12550   DOI   ScienceOn
8 Kawai, T., Takeuchi, O., Fujita, T., Inoue, J., Muhlradt, P.F., Sato, S., Hoshino, K. and Akira, S. (2001). Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J. Immunol., 167, 5887-5894   DOI
9 Lau, C.M., Broughton, C., Tabor, A.S., Akira, S., Flavell, R.A., Mamula, M.J., Christensen, S.R., Shlomchik, M.J., Viglianti, G.A., Rifkin, I.R. and Marshak-Rothstein, A. (2005). RNAassociated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J. Exp. Med., 202, 1171-1177   DOI   ScienceOn
10 Leadbetter, E.A., Rifkin, I.R., Hohlbaum, A.M., Beaudette, B.C., Shlomchik, M.J. and Marshak-Rothstein, A. (2002). Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature, 416, 603-607   DOI   ScienceOn
11 Lorenz, E., Mira, J.P., Frees, K.L. and Schwartz, D.A. (2002). Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch. Intern. Med., 162, 1028-1032   DOI   ScienceOn
12 Lu, M., Zhang, M., Takashima, A., Weiss, J., Apicella, M.A., Li, X.H., Yuan, D. and Munford, R.S. (2005). Lipopolysaccharide deacylation by an endogenous lipase controls innate antibody responses to Gram-negative bacteria. Nat. Immunol., 6, 989-994   DOI   ScienceOn
13 Marshak-Rothstein, A. (2006). Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol., 6, 823-835   DOI   ScienceOn
14 Medzhitov, R. (2001). Toll-like receptors and innate immunity. Nat. Rev. Immunol., 1, 135-145   DOI   ScienceOn
15 Medzhitov, R. and Janeway, C. Jr. (2000). The Toll receptor family and microbial recognition. Trends Microbiol., 8, 452-456   DOI   ScienceOn
16 Takeuchi, O., Sato, S., Horiuchi, T., Hoshino, K., Takeda, K., Dong, Z., Modlin, R.L. and Akira, S. (2002). Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol., 169, 10-14   DOI
17 O'Brien, A.D., Rosenstreich, D.L., Scher, I., Campbell, G.H., MacDermott, R.P. and Formal, S.B. (1980). Genetic control of susceptibility to Salmonella typhimurium in mice: role of the LPS gene. J. Immunol., 124, 20-24
18 Saitoh, S., Akashi, S., Yamada, T., Tanimura, N., Kobayashi, M., Konno, K., Matsumoto, F., Fukase, K., Kusumoto, S., Nagai, Y., Kusumoto, Y., Kosugi, A. and Miyake, K. (2004). Lipid A antagonist, lipid IVa, is distinct from lipid A in interaction with Toll-like receptor 4 (TLR4)-MD-2 and ligand-induced TLR4 oligomerization. Int. Immunol., 16, 961-969   DOI   ScienceOn
19 Tabeta, K., Georgel, P., Janssen, E., Du, X., Hoebe, K., Crozat, K., Mudd, S., Shamel, L., Sovath, S., Goode, J., Alexopoulou, L., Flavell, R.A. and Beutler, B. (2004). Tolllike receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc. Natl. Acad. Sci. USA 101, 3516-3521   DOI   ScienceOn
20 Toshchakov, V., Jones, B.W., Perera, P.Y., Thomas, K., Cody, M.J., Zhang, S., Williams, B.R., Major, J., Hamilton, T.A., Fenton, M.J. and Vogel, S.N. (2002). TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta-dependent gene expression in macrophages. Nat. Immunol., 3, 392- 398   DOI   ScienceOn
21 Heil, F., Hemmi, H., Hochrein, H., Ampenberger, F., Kirschning, C., Akira, S., Lipford, G., Wagner, H. and Bauer, S. (2004). Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science, 303, 1526-1529   DOI   ScienceOn
22 Eder, W., Klimecki, W., Yu, L., von Mutius, E., Riedler, J., Braun-Fahrlander, C., Nowak, D. and Martinez, F.D. (2004). Toll-like receptor 2 as a major gene for asthma in children of European farmers. J. Allergy Clin. Immunol., 113, 482-488   DOI   ScienceOn
23 Iwasaki, A. and Medzhitov, R. (2004). Toll-like receptor control of the adaptive immune responses. Nat. Immunol., 5, 987-995   DOI   ScienceOn
24 Lee, J.Y., Zhao, L., Youn, H.S., Weatherill, A.R., Tapping, R., Feng, L., Lee, W.H., Fitzgerald, K.A. and Hwang, D.H. (2004). Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Tolllike receptor 6 or 1. J. Biol. Chem., 279, 16971-16979   DOI   ScienceOn
25 Pulendran, B., Kumar, P., Cutler, C.W., Mohamadzadeh, M., Van Dyke, T. and Banchereau, J. (2001). Lipopolysaccharides from distinct pathogens induce different classes of immune responses in vivo. J. Immunol., 167, 5067-5076   DOI
26 Eldridge, M.W. and Peden, D.B. (2000). Allergen provocation augments endotoxin-induced nasal inflammation in subjects with atopic asthma. J. Allergy Clin. Immunol., 105, 475-481   DOI   ScienceOn
27 Gao, J.J., Filla, M.B., Fultz, M.J., Vogel, S.N., Russell, S.W. and Murphy, W.J. (1998). Autocrine/paracrine IFN-alphabeta mediates the lipopolysaccharide-induced activation of transcription factor Stat1alpha in mouse macrophages: pivotal role of Stat1alpha in induction of the inducible nitric oxide synthase gene. J. Immunol., 161, 4803-4810
28 Hoebe, K., Georgel, P., Rutschmann, S., Du, X., Mudd, S., Crozat, K., Sovath, S., Shamel, L., Hartung, T., Zahringer, U. and Beutler, B. (2005). CD36 is a sensor of diacylglycerides. Nature, 433, 523-527   DOI   ScienceOn
29 Querec, T., Bennouna, S., Alkan, S., Laouar, Y., Gorden, K., Flavell, R., Akira, S., Ahmed, R. and Pulendran, B. (2006). Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J. Exp. Med., 203, 413-424   DOI   ScienceOn
30 Braun-Fahrlander, C., Riedler, J., Herz, U., Eder, W., Waser, M., Grize, L., Maisch, S., Carr, D., Gerlach, F., Bufe, A., Lauener, R.P., Schierl, R., Renz, H., Nowak, D. and von Mutius, E. (2002). Environmental exposure to endotoxin and its relation to asthma in school-age children. N. Engl. J. Med., 347, 869-877   DOI   ScienceOn
31 Krauss, J.H., Seydel, U., Weckesser, J. and Mayer, H. (1989). Structural analysis of the nontoxic lipid A of Rhodobacter capsulatus 37b4. Eur. J. Biochem., 180, 519-526   DOI   ScienceOn
32 Munford, R.S. and Hall, C.L. (1986). Detoxification of bacterial lipopolysaccharides (endotoxins) by a human neutrophil enzyme. Science, 234, 203-205   DOI
33 Hagberg, L., Hull, R., Hull, S., McGhee, J.R., Michalek, S.M. and Svanborg Eden, C. (1984). Difference in susceptibility to gram-negative urinary tract infection between C3H/ HeJ and C3H/HeN mice. Infect. Immun., 46, 839-844
34 Seong, S.Y. and Matzinger, P. (2004). Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat. Rev. Immunol., 4, 469- 478   DOI   ScienceOn
35 Zhang, H., Tay, P.N., Cao, W., Li, W. and Lu, J. (2002). Integrin- nucleated Toll-like receptor (TLR) dimerization reveals subcellular targeting of TLRs and distinct mechanisms of TLR4 activation and signaling. FEBS Lett., 532, 171-176   DOI   ScienceOn
36 Bochud, P.Y., Hawn, T.R. and Aderem, A. (2003). Cutting edge: a Toll-like receptor 2 polymorphism that is associated with lepromatous leprosy is unable to mediate mycobacterial signaling. J. Immunol., 170, 3451-3454   DOI
37 Ogus, A.C., Yoldas, B., Ozdemir, T., Uguz, A., Olcen, S., Keser, I., Coskun, M., Cilli, A. and Yegin, O. (2004). The Arg753GLn polymorphism of the human toll-like receptor 2 gene in tuberculosis disease. Eur. Respir. J., 23, 219- 223   DOI   ScienceOn
38 Letiembre, M., Echchannaoui, H., Bachmann, P., Ferracin, F., Nieto, C., Espinosa, M. and Landmann, R. (2005). Tolllike receptor 2 deficiency delays pneumococcal phagocytosis and impairs oxidative killing by granulocytes. Infect. Immun., 73, 8397-8401   DOI   ScienceOn
39 Michel, O., Kips, J., Duchateau, J., Vertongen, F., Robert, L., Collet, H., Pauwels, R. and Sergysels, R. (1996). Severity of asthma is related to endotoxin in house dust. Am. J. Respir. Crit. Care. Med., 154, 1641-1646   DOI   ScienceOn
40 Beutler, B. (2004). Inferences, questions and possibilities in Toll-like receptor signalling. Nature, 430, 257-263   DOI   ScienceOn
41 Hemmi, H., Kaisho, T., Takeuchi, O., Sato, S., Sanjo, H., Hoshino, K., Horiuchi, T., Tomizawa, H., Takeda, K. and Akira, S. (2002). Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol., 3, 196-200   DOI   ScienceOn
42 Fitzgerald, K.A., Rowe, D.C., Barnes, B.J., Caffrey, D.R., Visintin, A., Latz, E., Monks, B., Pitha, P.M. and Golenbock, D.T. (2003). LPS-TLR4 Signaling to IRF-3/7 and NF- {kappa}B Involves the Toll Adapters TRAM and TRIF. J. Exp. Med., 198, 1043-1055   DOI   ScienceOn
43 Werner, M., Topp, R., Wimmer, K., Richter, K., Bischof, W., Wjst, M. and Heinrich, J. (2003). TLR4 gene variants modify endotoxin effects on asthma. J. Allergy Clin. Immunol., 112, 323-330   DOI   ScienceOn
44 Kitchens, R.L., Ulevitch, R.J. and Munford, R.S. (1992). Lipopolysaccharide (LPS) partial structures inhibit responses to LPS in a human macrophage cell line without inhibiting LPS uptake by a CD14-mediated pathway. J. Exp. Med., 176, 485-494   DOI   ScienceOn
45 Lee, J.Y. and Hwang, D.H. (2006). The modulation of inflammatory gene expression by lipids: mediation through Tolllike receptors. Mol. Cells, 21, 174-185
46 Nagai, Y., Akashi, S., Nagafuku, M., Ogata, M., Iwakura, Y., Akira, S., Kitamura, T., Kosugi, A., Kimoto, M. and Miyake, K. (2002). Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat. Immunol., 3, 667-672   DOI
47 Tian, J., Avalos, A.M., Mao, S.Y., Chen, B., Senthil, K., Wu, H., Parroche, P., Drabic, S., Golenbock, D., Sirois, C., Hua, J., An, L.L., Audoly, L., La Rosa, G., Bierhaus, A., Naworth, P., Marshak-Rothstein, A., Crow, M.K., Fitzgerald, K.A.,Latz, E., Kiener, P.A. and Coyle, A.J. (2007). Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat. Immunol., 8, 487-496   DOI   ScienceOn
48 Hemmi, H., Kaisho, T., Takeda, K. and Akira, S. (2003). The roles of Toll-like receptor 9, MyD88, and DNA-dependent protein kinase catalytic subunit in the effects of two distinct CpG DNAs on dendritic cell subsets. J. Immunol., 170, 3059-3064   DOI
49 Lorenz, E., Mira, J.P., Cornish, K.L., Arbour, N.C. and Schwartz, D.A. (2000). A novel polymorphism in the tolllike receptor 2 gene and its potential association with staphylococcal infection. Infect. Immun., 68, 6398-6401   DOI
50 Smirnova, I., Mann, N., Dols, A., Derkx, H.H., Hibberd, M.L., Levin, M. and Beutler, B. (2003). Assay of locus-specific genetic load implicates rare Toll-like receptor 4 mutations in meningococcal susceptibility. Proc. Natl. Acad. Sci. USA, 100, 6075-6080   DOI   ScienceOn
51 Medzhitov, R., Preston-Hurlburt, P. and Janeway, C.A. Jr. (1997). A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 388, 394-397   DOI   ScienceOn
52 Thorne, P.S., Kulhankova, K., Yin, M., Cohn, R., Arbes, S.J. Jr. and Zeldin, D.C. (2005). Endotoxin exposure is a risk factor for asthma: the national survey of endotoxin in United States housing. Am. J. Respir. Crit. Care. Med., 172, 1371-1377   DOI   ScienceOn
53 Woods, J.P., Frelinger, J.A., Warrack, G. and Cannon, J.G. (1988). Mouse genetic locus Lps influences susceptibility to Neisseria meningitidis infection. Infect. Immun., 56, 1950-1955
54 Honda, K., Yanai, H., Negishi, H., Asagiri, M., Sato, M., Mizutani, T., Shimada, N., Ohba, Y., Takaoka, A., Yoshida, N. and Taniguchi, T. (2005). IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature, 434, 772-777   DOI   ScienceOn
55 Agnese, D.M., Calvano, J.E., Hahm, S.J., Coyle, S.M., Corbett, S.A., Calvano, S.E. and Lowry, S.F. (2002). Human toll-like receptor 4 mutations but not CD14 polymorphisms are associated with an increased risk of gramnegative infections. J. Infect. Dis., 186, 1522-1525   DOI   ScienceOn
56 Harte, M.T., Haga, I.R., Maloney, G., Gray, P., Reading, P.C., Bartlett, N.W., Smith, G.L., Bowie, A. and O'Neill, L.A. (2003). The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J. Exp. Med., 197, 343-351   DOI
57 Lee, J.Y., Sohn, K.H., Rhee, S.H. and Hwang, D. (2001). Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J. Biol. Chem., 276, 16683-16689   DOI   ScienceOn
58 Tabeta, K., Hoebe, K., Janssen, E.M., Du, X., Georgel, P., Crozat, K., Mudd, S., Mann, N., Sovath, S., Goode, J., Shamel, L., Herskovits, A.A., Portnoy, D.A., Cooke, M., Tarantino, L.M., Wiltshire, T., Steinberg, B.E.. Grinstein, S. and Beutler, B. (2006). The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat. Immunol., 7, 156-164   DOI   ScienceOn
59 Yang, Y., Liu, B., Dai, J., Srivastava, P.K., Zammit, D.J., Lefrancois, L. and Li, Z. (2007). Heat shock protein gp96 is a master chaperone for toll-like receptors and is important in the innate function of macrophages. Immunity, 26, 215-226   DOI   ScienceOn
60 DiPerna, G., Stack, J., Bowie, A.G., Boyd, A., Kotwal, G., Zhang, Z., Arvikar, S., Latz, E., Fitzgerald, K.A. and Marshall, W.L. (2004). Poxvirus protein N1L targets the I-kappaB kinase complex, inhibits signaling to NF-kappaB by the tumor necrosis factor superfamily of receptors, and inhibits NF-kappaB and IRF3 signaling by toll-like receptors. J. Biol. Chem., 279, 36570-36578   DOI   ScienceOn
61 Krieg, A.M. (2000). The role of CpG motifs in innate immunity. Curr. Opin. Immunol., 12, 35-43   DOI   ScienceOn
62 Echchannaoui, H., Frei, K., Schnell, C., Leib, S.L., Zimmerli, W. and Landmann, R. (2002). Toll-like receptor 2-deficient mice are highly susceptible to Streptococcus pneumoniae meningitis because of reduced bacterial clearing and enhanced inflammation. J. Infect. Dis., 186, 798-806   DOI   ScienceOn
63 Lazarus, R., Klimecki, W.T., Raby, B.A., Vercelli, D., Palmer, L.J., Kwiatkowski, D.J., Silverman, E.K., Martinez, F. and Weiss, S.T. (2003). Single-nucleotide polymorphisms in the Toll-like receptor 9 gene (TLR9): frequencies, pairwise linkage disequilibrium, and haplotypes in three U.S. ethnic groups and exploratory case-control disease association studies. Genomics, 81, 85-91   DOI   ScienceOn
64 Stack, J., Haga, I.R., Schroder, M., Bartlett, N.W., Maloney, G., Reading, P.C., Fitzgerald, K.A., Smith, G.L. and Bowie, A.G. (2005). Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence. J. Exp. Med., 201, 1007-1018   DOI   ScienceOn
65 Schnare, M., Barton, G.M., Holt, A.C., Takeda, K., Akira, S. and Medzhitov, R. (2001). Toll-like receptors control activation of adaptive immune responses. Nat. Immunol., 2, 947-950   DOI   ScienceOn
66 Jiang, Z., Georgel, P., Du, X., Shamel, L., Sovath, S., Mudd, S., Huber, M., Kalis, C., Keck, S., Galanos, C., Freudenberg, M. and Beutler, B. (2005). CD14 is required for MyD88-independent LPS signaling. Nat. Immunol., 6, 565- 570   DOI   ScienceOn
67 Kang, T.J. and Chae, G.T. (2001). Detection of Toll-like receptor 2 (TLR2) mutation in the lepromatous leprosy patients. FEMS Immunol. Med. Microbiol., 31, 53-58   DOI
68 Lee, J.Y., Lowell, C.A., Lemay, D.G., Youn, H.S., Rhee, S.H., Sohn, K.H., Jang, B., Ye, J., Chung, J.H. and Hwang, D.H. (2005). The regulation of the expression of inducible nitric oxide synthase by Src-family tyrosine kinases mediated through MyD88-independent signaling pathways of Toll-like receptor 4. Biochem. Pharmacol., 70, 1231-1240   DOI   ScienceOn
69 Takeuchi, O., Kawai, T., Muhlradt, P.F., Morr, M., Radolf, J.D., Zychlinsky, A., Takeda, K. and Akira, S. (2001). Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol., 13, 933-940   DOI   ScienceOn
70 Poltorak, A., He, X., Smirnova, I., Liu, M.Y., Van Huffel, C., Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C., Freudenberg, M., Ricciardi-Castagnoli, P., Layton, B. and Beutler, B. (1998). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science, 282, 2085-2088   DOI   ScienceOn
71 Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M. and Hoffmann, J.A. (1996). The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell, 86, 973-983   DOI   ScienceOn
72 Medzhitov, R., Preston-Hurlburt, P., Kopp, E., Stadlen, A., Chen, C., Ghosh, S. and Janeway, C.A. Jr. (1998). MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol. Cell., 2, 253-258   DOI   ScienceOn
73 Kurt-Jones, E.A., Popova, L., Kwinn, L., Haynes, L.M., Jones, L.P., Tripp, R.A., Walsh, E.E., Freeman, M.W., Golenbock, D.T., Anderson, L.J. and Finberg, R.W. (2000). Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat. Immunol., 1, 398-401   DOI   ScienceOn