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Toll-like receptors (TLRs) play a crucial role in initiating and regulating innate and adaptive immune
responses by detecting invading microbial pathogens. TLRs can also respond to non-microbial mole-
cules derived from damaged tissue. Accumulating evidence suggests that deregulation of TLRs
results in the dysfunction of immune system and ultimately increases the risk of many immune and
inflammatory diseases including infectious diseases, allergy, and autoimmune diseases. Therefore,
understanding how the immune system is controlled by TLRs will provide new insight to find the
way to prevent or treat infectious diseases and immune disorders.
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INTRODUCTION

An immune system has been evolved to protect an
organism against infection by detecting and eliminating
invading pathogens. In general, the immune systems of
vertebrates such as human consist of innate immunity
and adaptive immunity. The innate immunity provides
an instant response to infection with broad reactivity as
the first line of host defense system. The adaptive
immunity responds with a high degree of specificity for
the recognition of the pathogen. While the adaptive
immune response to the initial exposure to an antigen
requires several days to be mounted, immunological
memory enables adaptive immune cells to be activated
guicker and stronger. Alterations in immune function
can cause adverse or immunotoxic effects such as
immunosuppression and overactivation eventually con-
tributing to the development of chronic diseases. When
the immune system is suppressed, impairment of host
immunity to invading pathogens results in the increased
susceptibility to life-threatening infections and neoplas-
tic diseases. In contrast, hyperactive immune responses
can culminate in autoimmune diseases, hypersensitiv-
ity, and chronic inflammation leading to unnecessary tis-
sue damage.

Toll-like receptor (TLR) is one of the pattern-recogni-
tion receptors (PRRs) detecting pathogen-associated
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molecular patterns (PAMPs) derived from invading micro-
organisms. The activation of TLRs and downstream sig-
naling pathways culminates in the expression of im-
mune and inflammatory mediators. As a result, TLRs
play an important role in host defense system by initiating
and regulating innate and adaptive immune responses
(Medzhitov and Janeway, 2000). This paper will reviev/
the role of TLRs in host defense and how deregulation
of TLRs can affect immune dysfunction and risk of the
relevant diseases.

TOLL-LIKE RECEPTORS REGULATING
INNATE AND ADAPTIVE IMMUNE
RESPONSES

Toll, a protein identified in Drosophila, is known to be
involved in the dorsal-ventral patterning in the develog-
mental stage of embryos. In adult Drosophila, Toll par-
ticipates in the regulation of immune responses by the
production of anti-fungal peptide, drosomycin (Lemaitre
et al., 1996). TLR, the mammalian homolog of Drosc-
phila Toll protein, is a type 1 transmembrane receptcr
consisting of an extraceilular domain with leucine-rich
repeat (LRR) motifs, a transmembrane domain, and a
cytoplasmic Toll/IL-1R (TIR) homology domain (Medzh -
tov et al., 1997). A constitutively active TLR4 induced
NFkB activation and the expression of inflammatory
cytokines and co-stimulatory molecules in human cel
lines suggesting the role of TLRs in inducing immun=
responses in mammalian system (Medzhitov et al,
1997). TLRs are primarily expressed in antigen-presen-
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ing cells (APCs) such as macrophages and dendritic
cells (DCs). Recognition of invading pathogens by TLRs
elicits a maturation process in DCs to induce the
expression of co-stimulatory molecules such as CD80
and CD86 and the production of pro-inflammatory
cytokines such as TNF-q, IL-1, and IL-12 (Medzhitov,
2001). Matured DCs present microorganism-derived
peptide-MHC complex to naive T cells to initiate anti-
gen-specific adaptive immune responses. Activation of
naive CD4" T cells by DCs leads to the differentiation of
T cells into effecter cells, either Th1 or Th2 cells. The
fate of T cells depends on various factors in the
microenvironment such as the type of DC population,
the isotype of TLR expressed and activated on DCs,
and the type of cytokines produced by DCs (lwasaki
and Medzhitov, 2004). Distinct subsets of DCs elicit dif-
ferent responses to TLR agonists, which may modulate
T cell differentiation. Plasmacytoid DCs stimulated with
TLRY7 or TLR9 agonists induce the production of type 1
interferons (IFNs) whereas myeloid DCs produce IL-12
in response to TLR7 or TLR9Y agonists (Schnare et al.,
2001; Hemmi et al., 2003). Different TLRs differentially
regulate the Th1/Th2 response. In general, activation of
TLR4 and TLR9 in DCs results in a skewed Th1
response (Pulendran et al., 2001; Krieg, 2000). While
activation of wild-type DCs by TLR4 agonist induces
production of IFN-y, Th1 cytokine in lymphocytes, defi-
ciency DCs deficient of MyD88, an adaptor signaling

Table 1. Toli-like receptors and their agonists

molecule of TLRs, enhances the showed the enhanced
production of Th2 cytokine, IL-4, demonstrating that
TLR4 signaling can activate DCs to support Th2
immune responses through MyD88-independent path-
way (Kaisho ef al., 2002). The live attenuated yellow
fever vaccine, YF-17D, which activates various TLRs,
TLR2, 7, 8, and 9 in DCs elicits a mixed Th1 and Th2
response (Querec et al., 2006). MyD88-deficient mice
injected with YF-17D show a reduction in production of
IFNy whereas YF-17D treatment to TLR2-deficient mice
enhanced IFNy production (Querec ef al., 2006) sug-
gesting that TLRs are involved in regulating of Th1/Th2
balance. Therefore, it has now become apparent that
TLRs play a critical role in the instruction and control of
innate and adaptive immune responses (lwasaki and
Medzhitov, 2004).

MICROBIAL AGONISTS AND SIGNALING
PATHWAYS OF TOLL-LIKE RECEPTORS

TLRs are germline-encoded receptors with limited
number of isotypes. Currently, at least thirteen of mam-
malian TLRs have been identified. Each isotype of TLR
recognizes different microbial components with specific-
ity (Table 1). The genetic study using mice hyporespon-
sive to lipopolysaccharide (LPS), a gram-negative
bacterial component, revealed that a mutation in TLR4,
either spontaneous knockout (C57BL/10ScCr) or replace-

Receptor

Microbial agonists

Host-derived agonists

TLR1 (with TLR2)

Triacy! lipopeptides
TLR2 Peptidoglycan
Lipoteichoic acid

Heat-shock protein 70
Saturated fatty acids

GPI-linked protein

Zymosan

Lipoproteins

Atypical lipopolysaccharide

TLR3 Double-stranded RNA Double-stranded RNA
TLR4 Lipopolysaccharide Heat-shock protein 60/70
Fusion protein Fibronectin
(Respiratory syncytial virus) Hyaluron
Heparan sulfate
Fibrinogen
Saturated fatty acids
Oxidized LDL

TLR5 Bacterial flagellin
Diacyl lipopeptides
GU-rich single-stranded RNA

TLR6 (with TLR2)
TLR7 and TLR8

Single-stranded RNA

TLR9 DNA (Bacterial or viral) DNA

TLR10 (human only) Unknown

TLR11 (mouse only)

Uropathogenic bacteria

Protozoan profillin-like protein

Unknown
Unknown

TLR12 (mouse only)
TLR13 (mouse only)
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ment of proline with histidine at position 713 (C3H/HeJ),
confers the resistance to LPS exposure (Poltorak et al.,
1998). This study showed that TLR4 is the receptor for
bacterial LPS and first demonstrated that TLRs are able
to recognize microorganism-derived substances. TLR4
also recognizes the viral invasion such as respiratory
syncytial virus (Kurt-Jones ef al., 2000). Bacterial lipo-
peptides and peptidoglycan are detected by TLR2.
TLRS5 senses flagellin, a component of bacterial flagella
filament from Gram(+) and Gram(-) bacteria (Hayashi et
al., 2001). TLR3 responds to double-stranded RNA
which is generated during viral replicative cycle. Polyi-
nosine-polycytidylic acid (poly(I:C)) is an analog of
dsRNA used as the synthetic ligand for TLR3 (Alex-
opoulou et al, 2001). TLR7 and TLR8 recognize GU-
rich short single-stranded RNA derived from virus (Heil
et al., 2004) and small synthetic molecules such as imi-
dazoquinolines and nucleoside analogues (Hemmi et
al., 2002). TLRQ detects unmethylated CpG oligonucle-
otides derived from bacteria and virus.

TLR4 stimulated by LPS or lipid A undergoes homo-
dimerization to initiate and amplify the activation of intra-
cellular signaling pathway (Zhang et al., 2002; Saitoh et
al., 2004). TLR2 is required to form a heterodimer with
TLR1 or TLR6 depending on the nature of TLR2 ago-
nist. Diacylated lipopeptides activate TLR2 and TLR6
dimers whereas triacylated lipopeptides are detected by
TLR2 and TLR1 heterodimers (Takeuchi et al., 2001,
2002). Acylation with saturated fatty acids such as lau-
ric acid, myristic acid and palmitic acid is critical for
agonistic activity of certain TLR2 and TLR4 ligands
(Munford and Hall, 1986). Deacylation of saturated fatty
acid moiety or replacement with unsaturated fatty acids
is one of the mechanisms to inactivate the ligand activ-
ity (Kitchens ef al., 1992; Krauss ef al., 1989; Lu et al,,
2005). Furthermore, treatment with saturated fatty acids
to immune cells led to the activation of TLR2 and TLR4
and the expression of immune-mediators (Lee et al,
2001, 2004).

In addition to the receptor dimerization, certain TLRs
require co-receptors for microbial recognition and activa-
tion of signaling pathways. TLR4 forms a complex with
glycoproteins such as CD14 and MD2 upon agonist
stimulation. CD14 is present as both a soluble form and
a membrane-bound form and binds to LPS. Smooth
LPS, but not rough LPS, cannot bind to TLR4 without
CD14. For rough LPS, CD14 is required for the activa-
tion of TRIF/TRAM-dependent signaling pathway (Jiang
et al., 2005). MD2 is a 25- to 30-KDa soluble protein
and associated with TLR4. MD2 knockout mice do not
respond to LPS showing that MD2 is indispensable to
recognize LPS (Nagai et al., 2002). CD36 is an 88-KDa
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Fig. 1. Downstream signaling pathways of Toll-lke recef-
tors. Toll-ike receptors (TLRs) recruit different combination
of adaptor molecules, MyD88, TIRAP, TRIF, and TRAN.
Two major signaling pathways of TLRs are MyD88-deper -
dent and MyD88-independent pathways (TRIF-dependent)
leading to the activation of downstream kinases. The conse-
quent activation of transcription factors including NFkE,
IRF3, and IRF7 culminates in the expression of immune and
inflammatory mediators.

glycoprotein and participates in the recognition of mac-
rophage-activating lipopeptide-2 (MALP-2) and lipote-
ichoic acid to activate TLR2/TLR8& dimer (Hoebe et al.,
2005). UNC-93B is a 12-membrane-spanning protein
and found in the endoplasmic reticulum (Tabeta et al.,
2006). Macrophages derived from mice with a mis-
sense mutation in UNC-93B showed defective response:s
to the TLR3, 7, and 9 agonist.

The activation of TLRs recruits adaptor molecules to
the cytosolic TIR domain such as myeloid differentia-
tion factor 88 (MyD88), Toll-interleukin 1 receptor (TIR)
domain-containing adapter protein (TIRAP/Mal), Toll/IL-|
receptor (TIR)-domain-containing adaptor inducing IFN[}
(TRIF), and TRIF-related adaptor molecule (TRAM). Dif-
ferent TLRs have different combination of adaptors
leading to the activation of two major downstream sig-
naling pathways, MyD88-dependent and -independert
(TRIF-dependent). The signaling pathways of TLRs are
illustrated in Fig. 1. MyD88 is the common adaptor
used by most TLRs except TLR3 (Medzhitov et al,
1998). TIRAP is recruited to TLR2 and TLR4 to cooper-
ate with MyD88. TLR3 and TLR4 activation requires
TRIF which is responsible for MyD88-independert
NFxB and mitogen-activated protein kinases (MAPKs)
activation. MyD88-dependent signaling pathways are
activated NF«kB activation occurs in an earlier and faster
period whereas TRIF-dependent signaling pathways
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NFxB activation showed a delayed kinetics in TLR4
signaling. TRAM named as TIR domain-containing pro-
tein (TIRP) and TIR-containing adaptor molecule-2
(TICAM-2), is associated with TLR4 and TRIF, but not
other TLRs (Fitzgerald et al., 2003). TLR5, TLR7, and
TLR9 have MyD88 as an adaptor.

MyD88 associates with cytosolic domain of TLRs
through TIR-TIR homophilic interaction and recruits IL-1
receptor-associated kinases (IRAK-4 and IRAK-1) through
a death domain (DD) interaction. This initiates phospho-
rylation and subsequent degradation of IRAK-1 and
association with tumor necrosis factor (TNF) receptor-
associated factor 6 (TRAF6) leading to the activation of
IKKB and MAPKs. As a result, transcription factors,
NFxB and AP-1, are activated to induce the expression
of inflammatory and immune-related gene products.

TRIF interacts with RIP1 which is the kinase known to
activate NFkB. In addition, TRIF activates TBK1 and
IKKe which phosphorylate and activate IRF3 and IRF7
leading to the expression of type 1 interferons (IFNs)
including IFNB in TLR3 and 4 signaling pathways
(Kawai et al., 2001; Toshchakov et al., 2002). IFNJ acti-
vates an IFNo/B receptor and downstream signaling
pathways, including JAK kinases in an autocrine/para-
crine manner leading to the phosphorylation of STAT1
and the expression of IFN-inducible genes such as
iINOS and IP-10 (Brierley and Fish, 2002; Gao et al,
1998). Src-family tyrosine kinases are also involved in
the regulation of the expression of IFN-inducible genes
in TRIF-signaling pathways of TLR4 (Lee et al., 2005).

TLR7 and TLR9O can produce type 1 IFNs without
TRIF through the interaction between MyD88, IRAK-1,
and IRF7 in plasmacytoid dendritic cells (Honda et al.,
2005). The production of type 1 IFNs by the activation
of TLRs including TLR3, 4, 7 and 9 recognizing viral
components is critical for anti-viral defense mechanism.

MODULATION OF SUSCEPTIBILITY
TO MICROBIAL INFECTION
BY TOLL-LIKE RECEPTORS

Since TLRs play an important role in mounting and
regulating innate and adaptive immune responses
against microbial infection, the activation of TLRs could
be beneficial to enhance host resistance to bacterial
and viral infection. Indeed, the treatment of a new class
of synthetic lipid A mimetics, the aminoalkyl glu-
cosaminide 4-phosphates (AGPs), of which activity is
dependent on TLR4, elicits protective immune responses
to bacteria (Listeria monocytogenes) or influenza virus
infection (Cluff et al., 2005). On the other hand, the
defect in the activation process of certain TLRs could

have deleterious impacts on host resistance resulting
from dysfunction of immune cells against pathogen
invasion. Considerable data show that the impairment
of TLR activation increases the risk of infectious dis-
eases.

Mice having a cytoplasmic mutation in TLR4 (C3H/
HeJ) were more susceptible to infection with gram-neg-
ative bacteria, Salmonella typhimurium, Escherichia coli,
and Neisseria meningitides than wild-type mice (O’Brien
et al., 1980; Hagberg er al., 1984; Woods et al., 1988).
TLR2-deficient mice infected with Strepfococcus pneu-
moniae, gram-positive bacteria, had higher bacterial
burden in brain and earlier kinetics of death than wild-
type mice resulting from reduced brain bacterial clear-
ance (Echchannaoui et al., 2002). Mice with TLR9 mis-
sense mutation exhibited increased susceptibility to
cytomegalovirus infection (Tabeta et al., 2004). The defi-
ciency of TLR also contributes to the impairment of bac-
tericidal function of macrophages. TLR2-deficient poly-
morphonuclear leukocytes showed delayed phagocyto-
sis process and lower oxidative bactericidal activity for
Streptococcus pneumoniae infection (Letiembre et al.,
2005).

Individuals with TLR4 mutation (Asp299Gly/Thr399lle)
which makes a less effective TLR4 had higher risk of
gram-negative infection and were more prone to
develop septic shock (Lorenz et al., 2002; Agnese et
al., 2002). Rare heterozygous missense mutations of
TLR4 were associated with enhanced risk of meningo-
coccal sepsis (Smirnova et al., 2003). Arg753GIn muta-
tion of TLR2 which reduces the responsiveness of
lipopeptide agonists from Borrelia burgdorferi and Tre-
ponema pallidum was associated with staphylococcal
infections (Lorenz et al., 2000). The frequency of TLR2
mutation of Arg753GIn was higher in tuberculosis patients
than in healthy controls (Ogus et al., 2004). TLR2 with
Arg677Trp mutation did not activate NFkB in response
to Mycobactenium leprae and Mycobacterium tuberculo-
sis (Bochud et al., 2003) and this polymorphism was
more found in the patients with lepromatous leprosy
and tuberculosis (Ben-Ali et al., 2004; Kang and Chae,
2001). These suggest that dysfunction of TLR2 in-
creases the susceptibility of developing certain infec-
tious diseases such as lepromatous leprosy and tuber-
culosis.

Heat shock protein gp96, a chaperone for TLRs, is
involved in the activation of various TLRs including
TLR2, 4, 5, 7, and 9. Gp96-deficiency in macrophages
greatly increased the susceptibility of mice to Listena
monocytogenes infection (Yang et al., 2007).

Certain viruses devise mechanisms to escape host
defense system by inhibiting TLR signaling. Vaccina
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virus produces A46R, A52R, and N1L proteins to dis-
rupt TLR activation through the interaction of TLR sig-
naling components (DiPerna ef al., 2004; Stack et al.,
2005; Harte et al, 2003). A46R which contains TIR
domain associates with TLR adaptors through TIR-TIR
interaction. A52R targets with IRAK2 and TRAF6 while
N1L interacts with TBK1.

IMMUNE DISORDERS ASSOCIATED
WITH OVERACTIVATION OF TOLL-LIKE
RECEPTORS

Immune system should be orchestrated under tight
control to maintain the balance between down-regula-
tion and over-stimulation of immune responses. The
overactivation of TLRs by microbial or host-derived mol-
ecules may result in the hyper-responsiveness of im-
mune system and contribute to the development of
chronic inflammatory diseases and various immune dis-
orders.

Sepsis. Since TLR activation elicits the production
of inflammatory mediators, hyperactivation of TLR sig-
naling may result in excessive and prolonged inflamma-
tory responses. Inappropriate and uncontrolled inflam-
mation is closely linked to the increased risk of the
development of inflammatory diseases. Sepsis induced
by bacterial infection is a clinical syndrome accompa-
nied by systemic inflammatory responses due to exces-
sive production of inflammatory mediators. Because of
frequent incidences and high mortality, it has been con-
sidered as one of the most critical complications derived
from microbial infection. Microbial components such as
LPS, lipopetides, unmethylated DNA, and flagellin evoke
septic symptoms mediated through the activation of
TLR signaling and consequent expression of inflamma-
tory gene products including TNFqa, IL-1B, iNOS, and
COX-2 in macrophages and monocytes (Beutler, 2004).

Allergy and asthma. There has been a consider-
able increase in the prevalence of allergies including
asthma in the past decades. This is at least partly due
to the increasing exposure of various chemicals and
environmental pollutants as the countries have been
developed. Allergies can be also caused by increasing
use of antibiotics and vaccination which affect immune
system. Majority of asthma incidence in adults and chil-
dren is triggered by respiratory infections of viruses.
Excessive immune and inflammatory responses in bron-
chial airways are important pathological symptoms of
asthma patients. TLRs recognize pathogen invasion in
airways and pulmonary tissues and evoke the produc-

tion of immune and inflammatory mediators. Several
evidences suggest the relevance of TLRs with allergy
and asthma. The exposure to LPS exacerbates the
symptoms of asthma. The severity of asthma in patients
allergic to house dust mite was correlated better with
levels of endotoxin than with mite allergen (Michel et al.,
1996). Pre-exposure to allergen enhanced the inflam-
matory responses induced by LPS (Eldridge and Peden,
2000). The national survey in United States housings
showed significant correlations between endotoxin lev-
els in houses and increased diagnoses of asthma
(Thome et al., 2005). People with TLR4 G299/139¢
polymorphism showed a lower risk of asthma whereas
the symptom of asthma was significantly increased with
elevated endotoxin levels in house dust (Wermer et al.,
2003). There is a contrasting report that early child-
hood exposure to household LPS protects agains:
development of allergies later in life (Braun-Fahrlande*
et al., 2002). Therefore, the timing of LPS exposure
seems to be important to determine if LPS can exacer-
bate or protect asthma symptoms. Farmers’ children
with a TLR2 polymorphism (a T allele in TLR2/-16934)
had less incidence of a diagnosis of asthma and allergy
suggesting that the genetic variation in TLR2 is associ-
ated with the susceptibility to asthma and allergies in
children of farmers in Europe (Eder et al., 2004). TLRY)
polymorphism with a C allele at -1237 was related to
the increased risk for asthma in European Americans,
but not African Americans (Lazarus et al., 2003). These:
studies suggested that TLR activation can be one of the:
critical factors to modulate the pathogenesis of asthma
and allergies.

Autoimmune diseases. Overactive immune re-
sponses can result in the dysfunction of immune sys-
tem inducing autoimmune disorders in which immune
system produces autoantibodies against self antigens.
TLRs can respond to endogencus host-derived compo-
nents as well as exogenous microbial pathogens (Mar-
shak-Rothstein, 2006) as depicted in Table 1. TLR2 an
TLR4 can be activated by damage-associated molecu-
lar pattern molecules (DAMPs) derived from damaged!
cells and injured tissue including heparan sulfate,
fibronectins, heat shock proteins, saturated fatty acids,
and modified low-density lipoprotein (Lee and Hwang,
2006; Seong and Matzinger, 2004). TLR3 and TLRY
can be stimulated by host-derived single-stranded RNA
(Lau et al., 2005; Kariko et al., 2004) and TLR9 can
recognize mammalian DNA (Leadbetter et al., 2002).
Cell necrosis, tissue injury, and inflammation can pro-
mote the release of these endogenous TLR agonists
which stimulate immune responses as self-antigens.
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Patients of systemic lupus erythematosus (SLE), one of
the most common autoimmune diseases, produce auto-
antibodies against nuclear self-antigens including DNA,
histones, and chromatin. Immune complexes contain-
ing self DNA activate B cells expressing an antigen
receptor specific for self-immunoglobulin-gamma (IgG)
mediated through the synergistic activation of the anti-
gen receptor and TLRS (Leadbetter et al., 2002). The
high-mobility group box 1 (HMGB1), a nuclear DNA-
binding protein, released from damaged cells is associ-
ated with DNA-containing immune complex and aug-
ments cytokine production through TLR9 activation
(Tian et al., 2007). These suggest that TLR signaling
may contribute the development and pathogenesis of
autoimmune diseases by recognizing endogenous self-
antigens.

CONCLUDING REMARK

TLR signaling is required to defend host against
microbial infection. The impairment of TLR activation
results in the immunodeficiency or immunosuppression
which renders host vulnerable to infectious diseases.
On the other hand, excessive activation of TLR signal-
ing may lead to autoimmunity, allergy, or chronic inflam-
mation resulting in the damage to the host. Therefore, it
will be critical to identify TLR modulators derived from
microbial components, host-derived molecules, chemi-
cals and drugs, and to understand the underlying mech-
anisms. This will help us to find the beneficial way to
regulate TLR activity in order to harmonize innate and
adaptive immune systems.
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