• Title/Summary/Keyword: horizontal component

Search Result 348, Processing Time 0.029 seconds

Shaking table tests on the seismic response of slopes to near-fault ground motion

  • Zhu, Chongqiang;Cheng, Hualin;Bao, Yangjuan;Chen, Zhiyi;Huang, Yu
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.133-143
    • /
    • 2022
  • The catastrophic earthquake-induced failure of slopes concentrically distributed at near-fault area, which indicated the special features of near-fault ground motions, i.e. horizontal pulse-like motion and large vertical component, should have great effect on these geo-disasters. We performed shaking table tests to investigate the effect of both horizontal pulse-like motion and vertical component on dynamic response of slope. Both unidirectional (i.e., horizontal or vertical motions) and bidirectional (i.e., horizontal and vertical components) motions are applied to soft rock slope model, and acceleration at different locations is reordered. The results show that the horizontal acceleration amplification factor (AAF) increases with height. Moreover, the horizontal AAF under unidirectional horizontal pulse-like excitations is larger than that subject to ordinary motion. The vertical AAF does not show an elevation amplification effect. The seismic response of slope under different bidirectional excitations is also different: (1) The horizontal AAF is roughly constant under horizontal pulse-like excitations with and without vertical waves, but (2) the horizontal AAF under ordinary bidirectional ground motions is larger than that under unidirectional ordinary motion. Above phenomena indicate that vertical component has limited effect on seismic response when the horizontal component is pulse-like ground motion, but it can greatly enhance seismic response of slope under ordinary horizontal motion. Moreover, the vertical AAF is enhanced by horizontal motion in both horizontal pulse-like and ordinary motion. Thence, we should pay enough attention to vertical ground motion, especially its horizontal component is ordinary ground motion.

A Study on the Characteristic of Ship`s Magnetic Distribution of M. S. KAYA by the Varies of Artificial Local Disturbance (인위적 지방자기 변동에 의한 가야호의 선체자기 분포특성에 관한 연구)

  • 조현정
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.2
    • /
    • pp.144-158
    • /
    • 1998
  • In order to study basic information on the developed electro-magnetic compass, experiments were carried out on board M. S. KAYA at the pier of Dong Kuk Steel Mill in Pusan and the Korean southern sea using a three-axis magnetic sensor from Jan. 21, 1995 to Feb. 14, 1996. The obtained results were as follows : 1. The amount of old metal on the pier was about 27,290tons~57,440tons with an average of 40,560tons, the artificial local disturbance at the pier was min. 27.1$\mu$T, max. 66.5$\mu$T, ave. 433$\mu$T for the horizontal component and min. -27.0$\mu$T, max. 45.1$\mu$T, ave. 3.7$\mu$T for the vertical component. Its direction of horizontal component was 305$^{\circ}$ with the ship's head up bearing at 225$^{\circ}$. 2. The ship's magnetic distribution on the starboard side on berthing at the pier was 17.4$\mu$T for the horizontal component and -6.2$\mu$T for the vertical component. On the ship's port side, it was 19.8$\mu$T for the horizontal component and 4.1$\mu$T for the vertical component. On the ship's starboard side at sea, the ship's magnetic distribution was 19.2$\mu$T for the horizontal component and 3.2$\mu$T for the vertical component. On the ship's port side, the readings were 22.0$\mu$T for the horizontal component and -1.8$\mu$T for the vertical component. The directions of these readings were nearly starboard side. 3. On the pier, the secular change of the artificial local disturbance decreased 8.3$\mu$T from 61.0$\mu$T to 52.7$\mu$T for the horizontal component and decreased 7.1$\mu$T from 8.9$\mu$T M 1.8$\mu$T for the vertical component. On the starboard side from its berth, the ship, s magnetic distribution increased 2.6$\mu$T from 14.8$\mu$T to 17.4$\mu$T for the horizontal component and increased -0.1$\mu$T from -6.1$\mu$T to -6.2$\mu$T for the vertical component. On the ship's port side from its berth, it increased 7.1$\mu$T from 12.7$\mu$T to 19.8$\mu$T for the horizontal component and increased 10.2$\mu$T from -6.1$\mu$T to 4.1$\mu$T for the vertical component. 4. While at sea, on the ship's starboard side, the Secular change of the ship's magnetic distribution increased 3.9$\mu$T from 15.3$\mu$T to 19.2$\mu$T for the horizontal component and increased 2.0$\mu$T from -5.2$\mu$T to -3.2$\mu$T for the vertical component. On the port side, the changes increased 11.4$\mu$T from 10.6$\mu$T to 22.0$\mu$T for the horizontal component and increased 4.9$\mu$T from -6.7$\mu$T to -1.8$\mu$T for the vertical component. Upon berthing at the pier, the deviation of the secular change increased westerly 1 degree W~ 2.5$^{\circ}$ W from 3.5$^{\circ}$ W~ 5$^{\circ}$ W M 6W with the ship's head up bearing at 225$^{\circ}$. While at sea, these increased westerly 2$^{\circ}$ ~ 3$^{\circ}$ from the Northeast to the South and increased easterly 1$^{\circ}$ ~ 8$^{\circ}$ from the Southwest to the North. 5. While at port, within 1 mile between the ship and berth of the pier, as we approached the pier, the westerly deviation increased and when we departed the pier easterly deviation increased. When approaching the pier, the deviation was smaller than the deviation when the ship was departing from the pier. When approaching the bearing at 225$^{\circ}$ with the ship's head up bearing, the varies of deviation was smaller than the varies when the ship's head up bearing was departing from it.

  • PDF

EM Responses of Buried Conductive Pipes Calculated by 3-D Finite Element Method (3차원 FEM 모델링에 의한 수평 도전성 관로의 전자기 반응 특성)

  • Chung Ho-Joon;Jung Hyun-Key;Park Yeong-Sue;Jo Chul-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.2
    • /
    • pp.48-52
    • /
    • 2000
  • We have calculated and analyzed the electromagnetic responses of buried conductive pipes due to a horizontal magnetic dipole source on the pound using a three-dimensional (3-D) finite element method to provide useful guidelines for designing electromagnetic pipe locator and for field operation of the system. For single buried pipe, the horizontal component and the horizontal difference of the vertical component of magnetic field show peaks above the pipe. When comparing the width of response curves of both cases around the peak, horizontal difference of vertical component of magnetic field shows much narrower peak, 2 times narrower at a half of maximum amplitude, than that of horizontal component of magnetic field. Accordingly, we can pinpoint the horizontal location of pipe on the ground more accurately by measuring the horizontal difference of vertical component of magnetic fold. Moreover, it will have a merit in determining the depth of pipe, because the equation for depth estimation is defined just above the pipe. When there are two buried pipes separated by two meters with each other, the response of horizontal difference of vertical component of magnetic field has two separate peaks each of which is located above the pipe whereas horizontal magnetic field response has only one peak above the pipe just below the transmitter. Thus, when there exist more than a buried pipe, measuring the horizontal difference of vertical magnetic field can effectively detect not only the pipe under transmitter but also adjacent ones. The width of response curves also indicates higher resolving ability of horizontal difference of vertical component of magnetic field.

  • PDF

A Study on the Effect of Particulate Matter Concentration on the Reliability of Decomposition Model (미세먼지 농도가 직산분리 모델의 신뢰성에 미치는 영향에 관한 연구)

  • Lee, Sang-Hyuk;Lee, Kyung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.4
    • /
    • pp.55-67
    • /
    • 2019
  • Recently, as the amount of particulate matter blowing from China increases, the domestic air environment is rapidly deteriorating. This pollution of the atmosphere greatly affects the light energy reaching the ground. Particularly, since the light enters the solar cell module in various forms, the amount of input energy of the solar power generation system may be changed depending on the ratio of direct beam irradiation and diffused horizontal irradiation. In this paper, we analyze how the ratio of direct beam component and diffused component on global horizontal irradiation varies with the atmospheric conditions. In addition, the reliability of the regression equation, designed to decompose the global horizontal irradiation into horizontal direct beam irradiation and diffused horizontal irradiation, was verified according to the level of air pollution. So, we derive the most suitable decomposition model for use in domestic climatic conditions in Korea by comparing the ratio of direct and diffuse component on the horizontal which is calculated with Perez model and Watanabe model using the meteorological weather data observed for 14 months. Finally, to reduce the error of the transposition result, we verified the reliability of the decomposition which depends on the atmospheric environment.

THE 3D BOUSSINESQ EQUATIONS WITH REGULARITY IN THE HORIZONTAL COMPONENT OF THE VELOCITY

  • Liu, Qiao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.649-660
    • /
    • 2020
  • This paper proves a new regularity criterion for solutions to the Cauchy problem of the 3D Boussinesq equations via one directional derivative of the horizontal component of the velocity field (i.e., (∂iu1; ∂ju2; 0) where i, j ∈ {1, 2, 3}) in the framework of the anisotropic Lebesgue spaces. More precisely, for 0 < T < ∞, if $$\large{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_o}^T}({\HUGE\left\|{\small{\parallel}{\partial}_iu_1(t){\parallel}_{L^{\alpha}_{x_i}}}\right\|}{\small^{\gamma}_{L^{\beta}_{x_{\hat{i}}x_{\bar{i}}}}+}{\HUGE\left\|{\small{\parallel}{\partial}_iu_2(t){\parallel}_{L^{\alpha}_{x_j}}}\right\|}{\small^{\gamma}_{L^{\beta}_{x_{\hat{i}}x_{\bar{i}}}}})dt<{{\infty}},$$ where ${\frac{2}{{\gamma}}}+{\frac{1}{{\alpha}}}+{\frac{2}{{\beta}}}=m{\in}[1,{\frac{3}{2}})$ and ${\frac{3}{m}}{\leq}{\alpha}{\leq}{\beta}<{\frac{1}{m-1}}$, then the corresponding solution (u, θ) to the 3D Boussinesq equations is regular on [0, T]. Here, (i, ${\hat{i}}$, ${\tilde{i}}$) and (j, ${\hat{j}}$, ${\tilde{j}}$) belong to the permutation group on the set 𝕊3 := {1, 2, 3}. This result reveals that the horizontal component of the velocity field plays a dominant role in regularity theory of the Boussinesq equations.

Assessment for Application of Horizontal Component Wave applied to Surface Wave Method for Ground stiffness Investigation (표면파기법을 이용한 지반강성평가시 수평성분파의 적용성 평가)

  • 이일화;조성호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.697-700
    • /
    • 2003
  • The SASW method is a promising and effective way of profiling ground stiffness nondestructively. This method has been successfully applied to many geotechnical sites, but significant lateral variability, embedded obstacles, and pavement lead to the low reliability. To improve these problems, the horizontal wave component has been introduced to improve the reliability of the stiffness profile determined by the SASW method. To understand dispersion character of the horizontal component wave propagation in artificial profiles, FEM analysis had been performed. Used models are homogeneous half-space and two layered half- spaced layers.

  • PDF

Examination and Evaluation of Results of the National Wide Horizontal Network Adjustment (국가기준점 망조정의 점검 및 평가)

  • Lee, Young-Jin;Choi, Yun-Soo;Kwon, Jay-Hyoun;Lee, Hung-Kyu
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.43-46
    • /
    • 2007
  • This paper focuses on examining and evaluating recent results of the national wide horizontal network adjustment which has carried out with respect to the Korean Geodetic Datum 2002 (KGD2002). To do this, 137 geodetic control points were observed by modem GPS technology. After processing all the observations, their outcomes are compared with ones provided by the national wide network adjustment. Results of GPS network show that RMSE is ${\pm}2.7cm\;and\;{\pm}6.5cm$ in horizontal and vertical component, respectively. On the other hand, ones from comparison with EDM network indicate that RMSE is ${\pm}3.0cm$ in horizontal component.

  • PDF

A Study on the Dynamic Characteristics of Single Layer Latticed Domes under Horizontal and Vertical Earthquake Motions (수평 및 수직방향 지진력을 받는 단층 래티스 돔의 동적 거동 특성에 관한 연구)

  • 한상을;정명채;이진섭;이갑수;유용주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.151-158
    • /
    • 1999
  • The single layer latticed domes have various behaviors with each geometrical shape and scale, and they are affected by vertical component as well as horizontal component of the dynamic load. And they represent very different earthquake responses under each ground acceleration compared with another structural systems. Generally, all of the members of latticed domes undergo three dimensional deflections if they are subjected to arbitrary one dimensional horizontal load under earthquake motions. And their response characteristics are very different to their shapes, rise/span ratios, and damping mechanisms. In this study the .earthquake response behavior is verified according to the factor of each shape, rise/span ratio, ana damping ratio of latticed domes, which undergo horizontal and vertical earthquake motions by numerical approaches.

  • PDF

A Study on the Buckling Characteristics of Single Layer Latticed Domes under Horizontal and Vertical Earthquake Motions (수평 및 수직방향 지진력을 받는 단층 래티스 돔의 좌굴 거동 특성에 관한 연구)

  • 한상을;유용주;이상주;이경수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.489-496
    • /
    • 1998
  • The single layer latticed domes have various behaviors with each geometrical shape and scale, and they are affected by vertical component as well as horizontal component of the dynamic load. And they represent ye different earthquake responses under each ground acceleration compared with another structural systems. Generally, all of the members of latticed domes undergo three dimensional deflections if they are subjected to arbitrary one dimensional horizontal load under earthquake motions. And their response characteristics are very different to their shapes, rise/span ratios, and damping mechanisms. In this study, the earthquake response behavior is verified according to the factor of each shape, rise/span ratio, and damping ratio of latticed domes, which undergo horizontal and vertical earthquake motions by numerical approaches.

  • PDF

Evaluation of seismic performance of mid-rise reinforced concrete frames subjected to far-field and near-field ground motions

  • Ansari, Mokhtar;Ansari, Masoud;Safiey, Amir
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.453-462
    • /
    • 2018
  • Damages to buildings affected by a near-fault strong ground motion are largely attributed to the vertical component of the earthquake resulting in column failures, which could lead to disproportionate building catastrophic collapse in a progressive fashion. Recently, considerable interests are awakening to study effects of earthquake vertical components on structural responses. In this study, detailed modeling and time-history analyses of a 12-story code-conforming reinforced concrete moment frame building carrying the gravity loads, and exposed to once only the horizontal component of, and second time simultaneously the horizontal and vertical components of an ensemble of far-field and near-field earthquakes are conducted. Structural responses inclusive of tension, compression and its fluctuations in columns, the ratio of shear demand to capacity in columns and peak mid-span moment demand in beams are compared with and without the presence of the vertical component of earthquake records. The influences of the existence of earthquake vertical component in both exterior and interior spans are separately studied. Thereafter, the correlation between the increase of demands induced by the vertical component of the earthquake and the ratio of a set of earthquake record characteristic parameters is investigated. It is shown that uplift initiation and the magnitude of tensile forces developed in corner columns are relatively more critical. Presence of vertical component of earthquake leads to a drop in minimum compressive force and initiation of tension in columns. The magnitude of this reduction in the most critical case is recorded on average 84% under near-fault ground motions. Besides, the presence of earthquake vertical components increases the shear capacity required in columns, which is at most 31%. In the best case, a direct correlation of 95% between the increase of the maximum compressive force and the ratio of vertical to horizontal 'effective peak acceleration (EPA)' is observed.