• Title/Summary/Keyword: hook design

Search Result 88, Processing Time 0.04 seconds

Study on the Computerization of Die Design for Bending Hook (후크 벤딩 금형 설계의 전산화에 관한 연구)

  • 조은정;정호승;정철우;조종래;최일동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.450-456
    • /
    • 2002
  • Die desig for manufacturing hooks from steel wires has been depended on empirical procedures based on trial and error method. To design die, at first the curvature and bending angle of hook are computed by using AutoCAD and developed program which is composed of Visual Basic. Then spring back should be considered because the elastic recovery of material is very important in bending process. In this study, bending analysis of elastic-plastic materials is applied to predict curvature of hook and spring back. Therefore, systematic procedure of die design for bending hook is achieved to consider elastic recovery in terms of hook shapes. Experimental results are good agreement with calculated results.

Multi-criteria shape design of crane-hook taking account of estimated load condition

  • Muromaki, Takao;Hanahara, Kazuyuki;Tada, Yukio
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.707-725
    • /
    • 2014
  • In order to improve the crane-hook's performance and service life, we formulate a multi-criteria shape design problem considering practical conditions. The structural weight, the displacement at specified points and the induced matrix norm of stiffness matrix are adopted as the evaluation items to be minimized. The heights and widths of cross-section are chosen as the design variables. The design variables are expressed in terms of shape functions based on the Gaussian function. For this multi-objective optimization problem with three items, we utilize a multi-objective evolutionary algorithm, that is, the multi-objective Particle Swarm Optimization (MOPSO). As a common feature of obtained solutions, the side views are tapered shapes similar to those of actual crane-hook designs. The evaluation item values of the obtained designs demonstrate importance of the present optimization as well as the feasibility of the proposed optimal design approach.

An Experimental Study on the Design of Dobby Hook for Repeated Loading Force (반복하중을 받는 Dobby Hook의 설계에 관한 실험적 연구)

  • Kim, Jong-Su;Lee, Gyu-Jeong;Lee, Tae-Se
    • 한국기계연구소 소보
    • /
    • s.20
    • /
    • pp.115-118
    • /
    • 1990
  • Hook of Dobby is a important part of shedding device, which must be endured the repeated loading force. In this paper, experiment on various mechanical characteristics; measurement of loading force were carried out, and compared the experimental values with results of Finite Element Method.

  • PDF

A Study on Adopting Active Suspension Control in Sky Hook System (스카이훅 시스템에의 능동 서스펜션 제어 이론 적용에 관한 연구)

  • Park Jung-Hyen;Jang Seung-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.950-955
    • /
    • 2006
  • This paper prosed modelling and design method in suspension system sesign to analyze sky hook damper system by adopting active suspension control theory. Recent in the field of suspension system design it is general to adopt active control scheme for stiffness and damping, and connection with other vehicle stability control equipment is also intricate, it is required for control system scheme to design more robust, higher response and precision control equipment. It is hon that sky hook suspension system is better than passive spring-damper system in designing suspension equipment. We analyze location of damper in sky hook system and its motion equation then design robust control system. Numerical example is shown for validity of robust control system design in active sky hook suspension system.

A Study on Behaviour of Giant Pacific Octopus, Parotopus dofleini to Single Line Hook for Hook Design (외줄낚시에 대한 대문어의 행동과 낚시형상 설계)

  • Park, Seong-Wook;Lee, Jeong-Woo;Yang, Yong-Su;Seo, Du-Ok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • The single line hook fishery for giant pacific octopus, Parotopus dofleini is one of the important in coastal Kangwon-do of Korea, where was caught an average of 4,000 ton during the period of 1996~2000. The fishing gear is consisted of a single buoy line, a buoy and a hook. In this study, the responses of giant pacific octopus to single line hook gear were examined in an experimental tank using a video camera in order to know hooking mechanism and improve hook. Giant pacific octopus tend to envelop the bait with their arms by rush or slowly swimming towards it. When they rush to the bait, they show much feeding behaviour as withdrawing after enveloping the bait using two arms. But when they approach with slowly swimming to bait, they show feeding behaviour as stopping after enveloping the bait using one arm. and then, the highly hooking rate appeared more often in the case of latter then former. The average feeding time on a sardine, giant pacific octopus and pork fat showed the range of 1 to 30 min, 10 to 50 min, and 50 min to over 1 hour, respectively. This indicates that it takes longer time for giant pacific octopus to eat the tough meat than the soft meat. The performance concerned with hooking showed that the 'B' type hook with a short shank was more favorable than the 'A' type hook with a long shank. However, the 'A' type hook has the advantage of easy dropping out caught octopus, compared to the 'B' type.

Product Design and Manufacture on Safety Hook and X-jog for application in Hoist and Crane (호이스트 및 크레인에 적용 가능한 안전후크와 X-jog 제품 설계 및 제작)

  • Na, Hyun-Ho;Kim, Do-Jung;Choi, Ju-Seok;Oh, Woo-Jun;Park, Jae-Woong;Lee, Chon-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.1
    • /
    • pp.91-96
    • /
    • 2015
  • In this study, we performed a study on prevention of the escape hoist heavy objects on the basis of the case of a disaster occurring during crane operations. A safety hook of the automatic fastening and coupling method by the conventional coupling method, the weight of the outside consisting of a combination of a safety ring structure was designed and manufactured. The main mechanism three-dimensional detail design and structural analysis confirmed the structure and stability of small strain than the allowable stress of the Safety Hook with X-jog through. Safety factor was confirmed to represent the average 1.5 to 1.2 higher than the safety factor to be considered in the general design structure. Therefore, Safety Hook and X-jog in the present study is to be operated upon structural stability is a structure attached to the hoist and crane are considered sufficient.

A Study on Active Suspension Robust Control with Sensor and Actuator Location (센서위치를 고려한 능동 서스펜션 강인제어에 관한 연구)

  • Park Jung-Hyen;Jang Seung-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.6
    • /
    • pp.1147-1152
    • /
    • 2006
  • This paper proposed modelling and design method in suspension system design to analyze sky hook damper system by adopting active robust control theory. Recent in the field of suspension system design it is general to adopt active control scheme for stiffness and damping, and connection with other vehicle stability control equipment is also intricate, it is required for control system scheme to design more robust, higher response and precision control equipment. It is known that sky hook suspension system is better than passive spring-damper system in designing suspension equipment. We analyze location of sensor and actuator in sky hook system and its motion equation, then design robust control system. Numerical example is shown for validity of robust control system design in active sky hook suspension system.

Effect of postural change on shoulder joint internal and external rotation range of motion in healthy adults in their 20s

  • Kim, Beom-Ryong;Yi, Dong-Hyun;Yim, Jong-Eun
    • Physical Therapy Rehabilitation Science
    • /
    • v.8 no.3
    • /
    • pp.152-157
    • /
    • 2019
  • Objective: We aimed to investigate differences of range of motion in measuring shoulder internal rotation (IR) and external rotation (ER) resulting from posture change in manual scapular stabilization in prone, hook-lying, sitting, and standing positions in healthy young adults. Design: Cross-sectional study. Methods: This study included healthy young adults who agreed to participate after a thorough explanation about the study purpose and methods. A clinometer was used to measure shoulder rotation. Measurements of shoulder rotation according to postural change were performed in prone, hook-lying, sitting, and standing positions. The repeated measures analysis of variance was used to compare between-group differences in postural change. Results: The lower the posture, the greater the average value of IR angle. In contrast, the higher the posture, the greater the average value of the external rotation angle. In active and passive IR with posture change, there was difference in average value but with no statistical significance. In active and passive ER, there was a statistically significant difference between prone and sitting, prone and standing, hook-lying and sitting, hook-lying and standing, and sitting and standing position (p<0.05). Conclusions: Our findings suggest that postural change should be considered in order to increase the strength or range of motion of the internal and external rotation of the patient's shoulder joint.

Use of semi-active tuned mass dampers for vibration control of force-excited structures

  • Setareh, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.11 no.4
    • /
    • pp.341-356
    • /
    • 2001
  • A new class of semi-active tuned mass dampers, named as "Ground Hook Tuned Mass Damper" (GHTMD) is introduced. This TMD uses a continuously variable semi-active damper (so called 'Ground-Hook') in order to achieve more reduction in the vibration level. The ground-hook dampers have been used in the auto-industry as a means of reducing the vibration of primary suspension systems in vehicles. This paper investigates the application of this damper as an element of a tuned damper for the vibration reduction of force-excited single degree of freedom (SDOF) models that can be representative of many structural systems. The optimum design parameters of GHTMDs are obtained based on the minimization of the steady-state displacement response of the main mass. The optimum design parameters which are evaluated in terms of non-dimensional values of the GHTMD are obtained for different mass ratios and main mass damping ratios. Using the frequency responses of the resulting systems, performance of the GHTMD is compared to that of equivalent passive TMD, and it is found that GHTMDs are more efficient. A design methodology to obtain the tuning parameters of GHTMD using the relationships developed in this paper is presented.