• 제목/요약/키워드: homotopy groups of mapping spaces

검색결과 2건 처리시간 0.015초

HOMOTOPY PROPERTIES OF map(ΣnℂP2, Sm)

  • Lee, Jin-ho
    • 대한수학회지
    • /
    • 제58권3호
    • /
    • pp.761-790
    • /
    • 2021
  • For given spaces X and Y, let map(X, Y) and map*(X, Y) be the unbased and based mapping spaces from X to Y, equipped with compact-open topology respectively. Then let map(X, Y ; f) and map*(X, Y ; g) be the path component of map(X, Y) containing f and map*(X, Y) containing g, respectively. In this paper, we compute cohomotopy groups of suspended complex plane πn+mnℂP2) for m = 6, 7. Using these results, we classify path components of the spaces map(ΣnℂP2, Sm) up to homotopy equivalence. We also determine the generalized Gottlieb groups Gn(ℂP2, Sm). Finally, we compute homotopy groups of mapping spaces map(ΣnℂP2, Sm; f) for all generators [f] of [ΣnℂP2, Sm], and Gottlieb groups of mapping components containing constant map map(ΣnℂP2, Sm; *).

Evaluation Subgroups of Mapping Spaces over Grassmann Manifolds

  • Abdelhadi Zaim
    • Kyungpook Mathematical Journal
    • /
    • 제63권1호
    • /
    • pp.131-139
    • /
    • 2023
  • Let Vk,n (ℂ) denote the complex Steifel and Grk,n (ℂ) the Grassmann manifolds for 1 ≤ k < n. In this paper, we compute, in terms of the Sullivan minimal models, the evaluation subgroups and, more generally, the relative evaluation subgroups of the fibration p : Vk,k+n (ℂ) → Grk,k+n (ℂ). In particular, we prove that G* (Grk,k+n (ℂ), Vk,k+n (ℂ) ; p) is isomorphic to Grel* (Grk,k+n (ℂ), Vk,k+n (ℂ) ; p) ⊕ G* (Vk,k+n (ℂ)).