• 제목/요약/키워드: homoserine

검색결과 72건 처리시간 0.029초

Genetic and Phenotypic Diversity of Plant Growth Promoting Rhizobacteria Isolated from Sugarcane Plants Growing in Pakistan

  • Mehnaz, Samina;Baig, Deeba N.;Lazarovits, George
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권12호
    • /
    • pp.1614-1623
    • /
    • 2010
  • Bacteria were isolated from roots of sugarcane varieties grown in the fields of Punjab. They were identified by using API20E/NE bacterial identification kits and from sequences of 16S rRNA and amplicons of the cpn60 gene. The majority of bacteria were found to belong to the genera of Enterobacter, Pseudomonas, and Klebsiella, but members of genera Azospirillum, Rhizobium, Rahnella, Delftia, Caulobacter, Pannonibacter, Xanthomonas, and Stenotrophomonas were also found. The community, however, was dominated by members of the Pseudomonadaceae and Enterobacteriaceae, as representatives of these genera were found in samples from every variety and location examined. All isolates were tested for the presence of five enzymes and seven factors known to be associated with plant growth promotion. Ten isolates showed lipase activity and eight were positive for protease activity. Cellulase, chitinase, and pectinase were not detected in any strain. Nine strains showed nitrogen fixing ability (acetylene reduction assay) and 26 were capable of solubilizing phosphate. In the presence of 100 mg/l tryptophan, all strains except one produced indole acetic acid in the growth medium. All isolates were positive for ACC deaminase activity. Six strains produced homoserine lactones and three produced HCN and hexamate type siderophores. One isolate was capable of inhibiting the growth of 24 pathogenic fungal strains of Colletotrichum, Fusarium, Pythium, and Rhizoctonia spp. In tests of their abilities to grow under a range of temperature, pH, and NaCl concentrations, all isolates grew well on plates with 3% NaCl and most of them grew well at 4 to $41^{\circ}C$ and at pH 11.

Quorum Quenching Bacteria Isolated from the Sludge of a Wastewater Treatment Plant and Their Application for Controlling Biofilm Formation

  • Kim, A-Leum;Park, Son-Young;Lee, Chi-Ho;Lee, Chung-Hak;Lee, Jung-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권11호
    • /
    • pp.1574-1582
    • /
    • 2014
  • Bacteria recognize changes in their population density by sensing the concentration of signal molecules, N-acyl-homoserine lactones (AHLs). AHL-mediated quorum sensing (QS) plays a key role in biofilm formation, so the interference of QS, referred to as quorum quenching (QQ), has received a great deal of attention. A QQ strategy can be applied to membrane bioreactors (MBRs) for advanced wastewater treatment to control biofouling. To isolate QQ bacteria that can inhibit biofilm formation, we isolated diverse AHL-degrading bacteria from a laboratory-scale MBR and sludge from real wastewater treatment plants. A total of 225 AHL-degrading bacteria were isolated from the sludge sample by enrichment culture. Afipia sp., Acinetobacter sp. and Streptococcus sp. strains produced the intracellular QQ enzyme, whereas Pseudomonas sp., Micrococcus sp. and Staphylococcus sp. produced the extracellular QQ enzyme. In case of Microbacterium sp. and Rhodococcus sp., AHL-degrading activities were detected in the whole-cell assay and Rhodococcus sp. showed AHL-degrading activity in cell-free lysate as well. There has been no report for AHL-degrading capability in the case of Streptococcus sp. and Afipia sp. strains. Finally, inhibition of biofilm formation by isolated QQ bacteria or enzymes was observed on glass slides and 96-well microtiter plates using crystal violet staining. QQ strains or enzymes not only inhibited initial biofilm development but also reduced established biofilms.

Role of LuxIR Homologue AnoIR in Acinetobacter nosocomialis and the Effect of Virstatin on the Expression of anoR Gene

  • Oh, Man Hwan;Choi, Chul Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권8호
    • /
    • pp.1390-1400
    • /
    • 2015
  • Quorum sensing is a process of cell-to-cell communication in which bacteria produce autoinducers as signaling molecules to sense cell density and coordinate gene expression. In the present study, a LuxI-type synthase, AnoI, and a LuxR-type regulator, AnoR, were identified in Acinetobacter nosocomialis, an important nosocomial pathogen, by sequence analysis of the bacterial genome. We found that N-(3-hydroxy-dodecanoyl)- L -homoserine lactone (OH-dDHL) is a quorum-sensing signal in A. nosocomialis. The anoI gene deletion was responsible for the impairment in the production of OH-dDHL. The expression of anoI was almost abolished in the anoR mutant. These results indicate that AnoI is essential for the production of OH-dDHL in A. nosocomialis, and its expression is positively regulated by AnoR. Moreover, the anoR mutant exhibited deficiency in biofilm formation. In particular, motility of the anoR mutant was consistently and significantly abolished compared with that of the wild type. The deficiency in the biofilm formation and motility of the anoR mutant was significantly restored by a functional anoR, indicating that AnoR plays important roles in the biofilm formation and motility. Furthermore, the present study showed that virstatin exerts its effects on the reduction of biofilm formation and motility by inhibiting the expression of anoR. Consequently, the combined results suggest that AnoIR is a quorum-sensing system that plays important roles in the biofilm formation and motility of A. nosocomialis, and virstatin is an inhibitor of the expression of anoR.

Chemical Composition and Quorum Sensing Inhibitory Effect of Nepeta curviflora Methanolic Extract against ESBL Pseudomonas aeruginosa

  • Haitham Qaralleh
    • 대한약침학회지
    • /
    • 제26권4호
    • /
    • pp.307-318
    • /
    • 2023
  • Objectives: Bacterial biofilm is regarded as a significant threat to the production of safe food and the arise of antibiotic-resistant bacteria. The objective of this investigation is to evaluate the quorum sensing inhibitory effect of Nepeta curviflora methanolic extract. Methods: The effectiveness of the leaves at sub-inhibitory concentrations of 2.5, 1.25, and 0.6 mg/mL on the virulence factors and biofilm formation of P. aeruginosa was evaluated. The effect of N. curviflora methanolic extract on the virulence factors of P. aeruginosa, including pyocyanin, rhamnolipid, protease, and chitinase, was evaluated. Other tests including the crystal violet assay, scanning electron microscopy (SEM), swarming motility, aggregation ability, hydrophobicity and exopolysaccharide production were conducted to assess the effect of the extract on the formation of biofilm. Insight into the mode of antiquorum sensing action was evaluated by examining the effect of the extract on the activity of N-Acyl homoserine lactone (AHL) and the expression of pslA and pelA genes. Results: The results showed a significant attenuation in the production of pyocyanin and rhamnolipid and in the activities of protease and chitinase enzymes at 2.5 and 1.25 mg/mL. In addition, N. curviflora methanolic extract significantly inhibited the formation of P. aeruginosa biofilm by decreasing aggregation, hydrophobicity, and swarming motility as well as the production of exopolysaccharide (EPS). A significant reduction in AHL secretion and pslA gene expression was observed, indicating that the extract inhibited quorum sensing by disrupting the quorum-sensing systems. The quorum-sensing inhibitory effect of N. curviflora extract appears to be attributed to the presence of kaempferol, quercetin, salicylic acid, rutin, and rosmarinic acid, as indicated by LCMS analysis. Conclusion: The results of the present study provide insight into the potential of developing anti-quorum sensing agents using the extract and the identified compounds to treat infections resulting from quorum sensing-mediated bacterial pathogenesis.

합성된 쿼럼 신호 유사 물질에 의한 녹농균 쿼럼 센싱 및 생물막 형성의 제어 (Inhibition of Quorum Sensing and Biofilm Formation by Synthetic Quorum Signal Analogues in Pseudomonas aeruginosa)

  • 김수경;김철진;윤제용;이준희
    • 한국미생물·생명공학회지
    • /
    • 제39권1호
    • /
    • pp.29-36
    • /
    • 2011
  • 그람음성 간균인 녹농균(Pseudomonas aeruginosa)은 비뇨기, 각막, 호흡기, 화상부위 등에 광범위하게 감염하는 기회감염성 병원균으로, 병원성의 발현에 세균의 세포밀도 인식 기전인 쿼럼 센싱(quorum sensing)이 매우 중요하게 관여한다. 사전 연구에서 녹농균 감염력을 제어하기 위한 방법으로 쿼럼 센싱의 주 신호물질인 N-3-oxododecanoyl-HSL(3OC12-HSL)의 분자 구조가 변형된 물질들을 합성하여 쿼럼 센싱 억제물질로 사용하고자 하였으며, 그 중 두 개의 물질들(5b, 5f)이 대장균을 이용한 스크리닝을 통해 녹농균의 주요 쿼럼 센싱 수용체 단백질인 LasR의 활성을 억제할 수 있음을 확인하였었다. 본 연구에서는 이 물질들의 효과를 보다 면밀히 분석하기 위하여 실제 녹농균에서 이 물질들이 쿼럼 센싱과 병독성을 억제할 수 있는지 분석해 보았다. 대장균을 이용한 리포터 분석에서와는 달리, 5b와 5f 모두 녹농균에서 직접 처리하였을 때는 LasR의 활성에 영향을 주지 못하였다. 대신 이 물질들은 녹농균의 또다른 쿼럼 센싱 수용체 단백질인 QscR의 활성에 선택적으로 영향을 주었다. 흥미롭게도 이 물질들의 효과는 대장균에서 얻어진 결과와는 달랐으며 다소 복잡하였다. 두 물질 모두 낮은 농도 범위(<10 ${\mu}m$)에서 QscR의 활성을 증가시켰으며, 높은 농도의 5f(${\approx}$1 mM)는 QscR을 강하게 억제하였다. 두 물질 모두 중요한 병독인자인 프로테아제 활성에는 영향을 주지 않으면서도, 만성감염을 매개하는데 중요한 생물막의 형성은 의미있게 감소시켰다. 특히 5f는 생물막의 성숙단계 보다는 녹농균 세포의 초기 부착을 억제하였다. 이러한 결과들을 바탕으로, 5f의 경우 독성의 증가 없이 생물막 형성을 억제할 수 있는 물질로 응용이 가능하다고 제안한다.

녹농균(Pseudomonas aeruginosa)의 쿼럼 센싱 수용체인 QscR의 활성에 영향을 미치는 아미노산 잔기 분석 (Analysis of Amino Acid Residues Affecting the Activity of QscR, a Quorum Sensing Receptor of Pseudomonas aeruginosa)

  • 박수진;김수경;이준희
    • 미생물학회지
    • /
    • 제48권3호
    • /
    • pp.180-186
    • /
    • 2012
  • 그람 음성균인 녹농균(Pseudomonas aeruginosa)은 다양한 환경에 존재하는 기회감염성 병원균으로, 병원성의 발현에 쿼럼센싱(QS) 기전이 중요한 역할을 담당한다. 녹농균의 여러 QS 신호물질 수용체들 중 하나인 QscR은 다른 QS 수용체들과는 구분되는 특별한 특성들을 가진다. 본 연구에서는 이러한 특성들 중 특히 넓은 신호물질 특이성을 QscR에 부여해 주는 아미노산 잔기가 무엇인지 알아보기 위해, QscR의 72번째 threonine, 132번째 arginine, 140번째 threonine 잔기가 각각 isoleucine, methionine, isoleucine 잔기로 치환된 돌연변이 QscR들($QscR_{T72I}$, $QscR_{R132M}$, $QscR_{T140I}$)을 제조하였다. 이들의 활성을 측정해 보았을 때 $QscR_{R132M}$은 N-3-oxododecanoyl homoserine lactone (3OC12-HSL)에 대한 반응성이 사라졌고, $QscR_{T72I}$$QscR_{T140I}$는 민감성이 많이 감소하기는 하였으나 여전히 3OC12-HSL에 대한 반응성을 가지고 있었다. 이들 돌연변이 QscR들에 다양한 구조의 acyl-HSL을 처리해 보았을 때, $QscR_{T72I}$$QscR_{T140I}$는 야생형 QscR처럼 자기 자신의 신호물질인 3OC12-HSL 보다 N-decanoyl HSL (C10-HSL)이나 N-dodecanoyl HSL (C12-HSL)처럼 10개 혹은 12개의 탄소 사슬을 가지면서 3번째 탄소에 oxo-moiety가 없는 acyl-HSL에 대해 더 높은 반응성을 보였으며, $QscR_{R132M}$은 3OC12-HSL 뿐만 아니라 본 연구에서 사용된 어떤 acyl-HSL에도 반응성을 보이지 않았다. 또한 $QscR_{T72I}$$QscR_{T140I}$는 QscR 억제제인 5f에 의해 야생형 QscR과 비슷한 수준으로 활성이 억제되었다. 이러한 결과들은 130번째 arginine의 경우 QscR의 활성과 acyl-HSL들과의 결합에 중요한 역할을 하는 반면, 72번째와 140번째 threonine들의 경우 QscR의 활성에는 중요하지만, 다른 구조의 acyl-HSL들에 대한 선택적 결합이나, 경쟁적 억제자들의 결합 간섭에는 영향을 주지 않음을 시사하는 것이다.

Identification of a Second Type of AHL-Lactonase from Rhodococcus sp. BH4, belonging to the α/β Hydrolase Superfamily

  • Ryu, Du-Hwan;Lee, Sang-Won;Mikolaityte, Viktorija;Kim, Yea-Won;Jeong, Haeyoung;Lee, Sang Jun;Lee, Chung-Hak;Lee, Jung-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권6호
    • /
    • pp.937-945
    • /
    • 2020
  • N-acyl-homoserine lactone (AHL)-mediated quorum sensing (QS) plays a major role in development of biofilms, which contribute to rise in infections and biofouling in water-related industries. Interference in QS, called quorum quenching (QQ), has recieved a lot of attention in recent years. Rhodococcus spp. are known to have prominent quorum quenching activity and in previous reports it was suggested that this genus possesses multiple QQ enzymes, but only one gene, qsdA, which encodes an AHL-lactonase belonging to phosphotriesterase family, has been identified. Therefore, we conducted a whole genome sequencing and analysis of Rhodococcus sp. BH4 isolated from a wastewater treatment plant. The sequencing revealed another gene encoding a QQ enzyme (named jydB) that exhibited a high AHL degrading activity. This QQ enzyme had a 46% amino acid sequence similarity with the AHL-lactonase (AidH) of Ochrobactrum sp. T63. HPLC analysis and AHL restoration experiments by acidification revealed that the jydB gene encodes an AHL-lactonase which shares the known characteristics of the α/β hydrolase family. Purified recombinant JydB demonstrated a high hydrolytic activity against various AHLs. Kinetic analysis of JydB revealed a high catalytic efficiency (kcat/KM) against C4-HSL and 3-oxo-C6 HSL, ranging from 1.88 x 106 to 1.45 x 106 M-1 s-1, with distinctly low KM values (0.16-0.24 mM). This study affirms that the AHL degrading activity and biofilm inhibition ability of Rhodococcus sp. BH4 may be due to the presence of multiple quorum quenching enzymes, including two types of AHL-lactonases, in addition to AHL-acylase and oxidoreductase, for which the genes have yet to be described.

Elucidation of the Biosynthetic Pathway of Vitamin B Groups and Potential Secondary Metabolite Gene Clusters Via Genome Analysis of a Marine Bacterium Pseudoruegeria sp. M32A2M

  • Cho, Sang-Hyeok;Lee, Eunju;Ko, So-Ra;Jin, Sangrak;Song, Yoseb;Ahn, Chi-Yong;Oh, Hee-Mock;Cho, Byung-Kwan;Cho, Suhyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권4호
    • /
    • pp.505-514
    • /
    • 2020
  • The symbiotic nature of the relationship between algae and marine bacteria is well-studied among the complex microbial interactions. The mutual profit between algae and bacteria occurs via nutrient and vitamin exchange. It is necessary to analyze the genome sequence of a bacterium to predict its symbiotic relationships. In this study, the genome of a marine bacterium, Pseudoruegeria sp. M32A2M, isolated from the south-eastern isles (GeoJe-Do) of South Korea, was sequenced and analyzed. A draft genome (91 scaffolds) of 5.5 Mb with a DNA G+C content of 62.4% was obtained. In total, 5,101 features were identified from gene annotation, and 4,927 genes were assigned to functional proteins. We also identified transcription core proteins, RNA polymerase subunits, and sigma factors. In addition, full flagella-related gene clusters involving the flagellar body, motor, regulator, and other accessory compartments were detected even though the genus Pseudoruegeria is known to comprise non-motile bacteria. Examination of annotated KEGG pathways revealed that Pseudoruegeria sp. M32A2M has the metabolic pathways for all seven vitamin Bs, including thiamin (vitamin B1), biotin (vitamin B7), and cobalamin (vitamin B12), which are necessary for symbiosis with vitamin B auxotroph algae. We also identified gene clusters for seven secondary metabolites including ectoine, homoserine lactone, beta-lactone, terpene, lasso peptide, bacteriocin, and non-ribosomal proteins.

Potential of fascaplysin and palauolide from Fascaplysinopsis cf reticulata to reduce the risk of bacterial infection in fish farming

  • Mai, Tepoerau;Toullec, Jordan;Wynsberge, Simon Van;Besson, Marc;Soulet, Stephanie;Petek, Sylvain;Aliotti, Emmanuelle;Ekins, Merrick;Hall, Kathryn;Erpenbeck, Dirk;Lecchini, David;Beniddir, Mehdi A.;Saulnier, Denis;Debitus, Cecile
    • Fisheries and Aquatic Sciences
    • /
    • 제22권12호
    • /
    • pp.30.1-30.11
    • /
    • 2019
  • Marine natural products isolated from the sponge Fascaplysinopsis cf reticulata, in French Polynesia, were investigated as an alternative to antibiotics to control pathogens in aquaculture. The overuse of antibiotics in aquaculture is largely considered to be an environmental pollution, because it supports the transfer of antibiotic resistance genes within the aquatic environment. One environmentally friendly alternative to antibiotics is the use of quorum sensing inhibitors (QSIs). Quorum sensing (QS) is a regulatory mechanism in bacteria which control virulence factors through the secretion of autoinducers (AIs), such as acyl-homoserine lactone (AHL) in gram-negative bacteria. Vibrio harveyi QS is controlled through three parallel pathways: HAI-1, AI-2, and CAI-1. Bioassay-guided purification of F. cf reticulata extract was conducted on two bacterial species, i.e., Tenacibaculum maritimum and V. harveyi for antibiotic and QS inhibition bioactivities. Toxicity bioassay of fractions was also evaluated on the freshwater fish Poecilia reticulata and the marine fish Acanthurus triostegus. Cyclohexanic and dichloromethane fractions of F. cf reticulata exhibited QS inhibition on V. harveyi and antibiotic bioactivities on V. harveyi and T. maritimum, respectively. Palauolide (1) and fascaplysin (2) were purified as major molecules from the cyclohexanic and dichloromethane fractions, respectively. Palauolide inhibited QS of V. harveyi through HAI-1 QS pathway at 50 ㎍ ml-1 (26 μM), while fascaplysin affected the bacterial growth of V. harveyi (50 ㎍ ml-1) and T. maritimum (0.25 ㎍). The toxicity of fascaplysin-enriched fraction (FEF) was evaluated and exhibited a toxic effect against fish at 50 ㎍ ml-1. This study demonstrated for the first time the QSI potential of palauolide (1). Future research may assess the toxicity of both the cyclohexanic fraction of the sponge and palauolide (1) on fish, to confirm their potential as alternative to antibiotics in fish farming.

해양 생물에서 분리된 Phaeobacter inhibens KJ-2의 항균 활성 (Examination of Antimicrobial Activity by Phaeobacter inhibens KJ-2 Isolated from a Marine Organism)

  • 김윤범;김동휘;허문수
    • 생명과학회지
    • /
    • 제27권10호
    • /
    • pp.1161-1167
    • /
    • 2017
  • 본 연구는 양식업에 막대한 경제적인 손실을 야기시키는 세균성 어류질병인 Vibrio anguillarum을 예방하고 억제하기 위한 목적을 두고, 제주 연안에 서식하는 군소 알로부터 특징적인 균주를 분리 하였다. 이를 16S rRNA 염기서열 분석, 형태학적 특성을 통해 균을 동정하여 Phaeobacter inhibens KJ-2로 명명하였다. Phaeobacter inhibens KJ-2 균주는 Vibrio sp.에 대해 강한 항균 활성을 갖고 있으며, 항균물질의 생산특성을 배양조건에 따라 검토하였으며, 그 결과 진탕 배양의 경우 $20^{\circ}C$에서 24시간 배양 후, 정치 배양의 경우 96시간 배양 후 항균 활성이 가장 높게 나타났다. 진탕 배양 및 정치 배양 모두 4시간 후부터 생육도는 낮았으나 항균 물질 생산을 시작하였다. 생육도가 거의 없는데도 불구하고 항균물질이 생산이 이루어졌는데, 이는 QS (Quorum Sensing)의 신호 물질인 AHLs과 관련이 있다고 사료되며, AHLs의 생성능은 항균 활성과 거의 일치함을 알 수 있었다. 이런 배양특성을 바탕으로 항균 활성을 검토한 결과 V. anguillarum외 다른 Vibrio sp.에 대해서도 항균활성을 나타내었다. 특히 Vibrio vulnificus, Vibrio campbellii, Vibrio mimicus에 대해 높은 저해능을 나타내었다.