Browse > Article
http://dx.doi.org/10.4014/jmb.2001.01006

Identification of a Second Type of AHL-Lactonase from Rhodococcus sp. BH4, belonging to the α/β Hydrolase Superfamily  

Ryu, Du-Hwan (Department of Biomedicinal Science and Biotechnology, Paichai University)
Lee, Sang-Won (Department of Biomedicinal Science and Biotechnology, Paichai University)
Mikolaityte, Viktorija (Department of Biomedicinal Science and Biotechnology, Paichai University)
Kim, Yea-Won (Department of Biomedicinal Science and Biotechnology, Paichai University)
Jeong, Haeyoung (Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Lee, Sang Jun (Department of Systems Biotechnology, Chung-Ang University)
Lee, Chung-Hak (School of Chemical and Biological Engineering, Seoul National University)
Lee, Jung-Kee (Department of Biomedicinal Science and Biotechnology, Paichai University)
Publication Information
Journal of Microbiology and Biotechnology / v.30, no.6, 2020 , pp. 937-945 More about this Journal
Abstract
N-acyl-homoserine lactone (AHL)-mediated quorum sensing (QS) plays a major role in development of biofilms, which contribute to rise in infections and biofouling in water-related industries. Interference in QS, called quorum quenching (QQ), has recieved a lot of attention in recent years. Rhodococcus spp. are known to have prominent quorum quenching activity and in previous reports it was suggested that this genus possesses multiple QQ enzymes, but only one gene, qsdA, which encodes an AHL-lactonase belonging to phosphotriesterase family, has been identified. Therefore, we conducted a whole genome sequencing and analysis of Rhodococcus sp. BH4 isolated from a wastewater treatment plant. The sequencing revealed another gene encoding a QQ enzyme (named jydB) that exhibited a high AHL degrading activity. This QQ enzyme had a 46% amino acid sequence similarity with the AHL-lactonase (AidH) of Ochrobactrum sp. T63. HPLC analysis and AHL restoration experiments by acidification revealed that the jydB gene encodes an AHL-lactonase which shares the known characteristics of the α/β hydrolase family. Purified recombinant JydB demonstrated a high hydrolytic activity against various AHLs. Kinetic analysis of JydB revealed a high catalytic efficiency (kcat/KM) against C4-HSL and 3-oxo-C6 HSL, ranging from 1.88 x 106 to 1.45 x 106 M-1 s-1, with distinctly low KM values (0.16-0.24 mM). This study affirms that the AHL degrading activity and biofilm inhibition ability of Rhodococcus sp. BH4 may be due to the presence of multiple quorum quenching enzymes, including two types of AHL-lactonases, in addition to AHL-acylase and oxidoreductase, for which the genes have yet to be described.
Keywords
Quorum quenching; quorum sensing; AHL; AHL-lactonase; Rhodococcus spp.; biofilm;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Dong Y, Xu J, Li X, Zhang L. 2000. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc. Natl. Acad. Sci. USA 97: 3526-3531.   DOI
2 Kim M, Choi W, Kang H, Lee J, Kang B, Kim K, et al. 2005. The molecular structure and catalytic mechanism of a quorum-quenching N-acyl-L-homoserine lactone hydrolase. Proc. Natl. Acad. Sci. 102: 17606-17611   DOI
3 Uroz S, Oger P, Chapelle E, Adeline M, Faure D, Dessaux Y. 2008. A Rhodococcus qsdA-encoded enzyme defines a novel class of largespectrum quorum-quenching lactonases. Appl. Environ. Microbiol. 74: 1357-1366.   DOI
4 Xue B, Chow J, Baldansuren A, Yap L, Gan Y, Dikanov S, et al. 2013. Structural evidence of a productive active site architecture for an evolved quorum-quenching GKL lactonase. Biochemistry 52: 2359-2370.   DOI
5 Mei G, Yan X, Turak A, Luo Z, Zhang L. 2010. AidH, an alpha/beta-hydrolase fold family member from an Ochrobactrum sp. strain, is a novel N-acylhomoserine lactonase. Appl. Environ. Microbiol. 76: 4933-4942.   DOI
6 Wang W, Morohoshi T, Someya N, Ikeda T. 2012. Diversity and distribution of N-acylhomoserine lactone (AHL)-degrading activity and AHL-lactonase (AiiM) in genus Microbacterium. Microbes. Environ. 27: 330-333.   DOI
7 Kalia V. 2013. Quorum sensing inhibitors: an overview. Biotechnol. Adv. 31: 224-245.   DOI
8 Kim D, Choi K, Yoo M, Zylstra G, Kim E. 2018. Biotechnological potential of Rhodococcus biodegradative pathways. J. Microbiol. Biotechnol. 28: 1037-1051.   DOI
9 van der Geize R, Dijkhuizen L. 2004. Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr. Opin. In. Microbiol. 7: 255-261.   DOI
10 Oh H, Yeon K, Yang C, Kim S, Lee C, Park S, et al. 2012. Control of membrane biofouling in MBR for wastewater treatment by quorum quenching bacteria encapsulated in microporous membrane. Environ. Sci. Technol. 46: 4877-4884.   DOI
11 Barbey C, Chane A, Burini J, Maillot O, Merieau A, Gallique M, et al. 2018. A rhodococcal transcriptional regulatory mechanism detects the common lactone ring of AHL quorum-sensing signals and triggers the quorum-quenching response. Front. Microbiol. 9: 2800.   DOI
12 Park S, Hwang B, Shin M, Kim J, Kim H, Lee J. 2006. N-acylhomoserine lactonase producing Rhodococcus spp. with different AHLdegrading activities. FEMS Microbiol. Lett. 261: 102-108.   DOI
13 Latifi A, Winson M, Foglino M, Bycroft B, Stewart G, Lazdunski A, et al. 1995. Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol. Microbiol. 17: 333-343.   DOI
14 Cook D, Li P, Ruchaud F, Padden S, Farrand S. 1997. Ti plasmid conjugation is independent of vir: reconstitution of the tra functions from pTiC58 as a binary system. J. Bacteriol. 179: 1291-1297.   DOI
15 Zhu J, Winans S. 1998. Activity of the quorum-sensing regulator TraR of Agrobacterium tumefaciens is inhibited by a truncated, dominant defective TraR-like protein. Mol. Microbiol. 27: 289-297.   DOI
16 Bokhove M, Jimenez P, Quax W, Dijkstra B. 2009. The quorum-quenching N-acyl homoserine lactone acylase PvdQ is an Ntnhydrolase with an unusual substrate-binding pocket. Proc. Natl. Acad. Sci. USA 107: 686-691.   DOI
17 Gao A, Mei G, Liu S, Wang P, Tang Q, Liu Y, et al. 2012. High-resolution structures of AidH complexes provide insights into a novel catalytic mechanism forN-acyl homoserine lactonase. Acta. Crystallogr. Sect. D-Biol. Crystallogr. 69: 82-91.   DOI
18 Czajkowski R, Krzyzanowska D, Karczewska J, Atkinson S, Przysowa J, Lojkowska E, et al. 2011. Inactivation of AHLs by Ochrobactrum sp. A44 depends on the activity of a novel class of AHL acylase. Environ. Microbiol. Rep. 3: 59-68.   DOI
19 Mayer C, Muras A, Romero M, Lopez M, Tomas M, Otero A. 2018. Multiple quorum quenching enzymes are active in the nosocomial pathogen Acinetobacter baumannii ATCC17978. Front. Cell. Infect. Microbiol. 8: 310.   DOI
20 Schipper C, Hornung C, Bijtenhoorn P, Quitschau M, Grond S, Streit W. 2008. Metagenome-derived clones encoding two novel lactonase family proteins involved in biofilm inhibition in Pseudomonas aeruginosa. Appl. Environ. Microbiol. 75: 224-233.   DOI
21 Fan X, Liu X, Liu Y. 2012. The cloning and characterization of one novel metagenome-derived thermostable esterase acting on Nacylhomoserine lactones. J. Mol. Catal. B-Enzym. 83:29-37.   DOI
22 Afriat L, Roodveldt C, Manco G, Tawfik D. 2006. The latent promiscuity of newly identified microbial lactonases is linked to a recently diverged phosphotriesterase. Biochemistry 45: 13677-13686.   DOI
23 Last D, Kruger G, Dorr M, Bornscheuer U. 2016. Fast, continuous, and high-throughput (bio)chemical activity assay for N-acyl-lhomoserine lactone quorum-quenching enzymes. Appl. Environ. Microbiol. 82: 4145-4154.   DOI
24 Tang K, Zhang Y, Yu M, Shi X, Coenye T, Bossier P, et al. 2013. Evaluation of a new high-throughput method for identifying quorum quenching bacteria. Sci. Rep. 3: 2935.   DOI
25 de Carvalho C, da Fonseca M. 2005. The remarkable Rhodococcus erythropolis. Appl. Microbiol. Biotechnol. 67: 715-726.   DOI
26 Holmquist M. 2000. Alpha beta-hydrolase fold enzymes structures, functions and mechanisms. Curr. Protein Pept. Sci. 1: 209-235.   DOI
27 Kim A, Park S, Lee C, Lee C, Lee J. 2014. Quorum quenching bacteria isolated from the sludge of a wastewater treatment plant and their application for controlling biofilm formation. J. Microbiol. Biotechnol. 24: 1574-1582.   DOI
28 Zhu B, Cai G, Hall EO, Freeman GJ. 2007. In-fusion assembly: seamless engineering of multidomain fusion proteins, modular vectors, and mutations. Biotechniques 43: 354-359.   DOI
29 McClean K, Winson M, Fish L, Taylor A, Chhabra S, Camara M, et al. 1997. Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143: 3703-3711.   DOI
30 Shastry RP, Dolan SK, Abdelhamid Y, Vittal RR, Welch M. 2018. Purification and characterisation of a quorum quenching AHLlactonase from the endophytic bacterium Enterobacter sp. CS66. FEMS Microbiol. Lett. 365: fny054.
31 Davies D. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280: 295-298.   DOI
32 Yates E, Philipp B, Buckley C, Atkinson S, Chhabra S, Sockett R, et al. 2002. N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect. Immun. 70: 5635-5646.   DOI
33 O'Toole G, Kolter R. 1998. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: a genetic analysis. Mol. Microbiol. 28: 449-461.   DOI
34 Fan X, Liang M, Wang L, Chen R, Li H, Liu X. 2017. Aii810, a novel cold-adapted N-acylhomoserine lactonase discovered in a metagenome, can strongly attenuate Pseudomonas aeruginosa virulence factors and biofilm formation. Front. Microbiol. 8: 1950.   DOI
35 Miller M, Bassler B. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55: 165-199.   DOI
36 Whitehead N, Barnard A, Slater H, Simpson N, Salmond G. 2001. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol. Rev. 25: 365-404.   DOI
37 Dickschat J. 2010. Quorum sensing and bacterial biofilms. Nat. Prod. Rep. 27: 343.   DOI
38 Grandclement C, Tannieres M, Morera S, Dessaux Y, Faure D. 2015. Quorum quenching: role in nature and applied developments. FEMS Microbiol. Rev. 40: 86-116.   DOI
39 Dong Y, Wang L, Xu J, Zhang H, Zhang X, Zhang L. 2001. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411: 813-817.   DOI
40 Yeon K, Cheong W, Oh H, Lee W, Hwang B, Lee C, et al. 2009. Quorum sensing: a new biofouling control paradigm in a membrane bioreactor for advanced wastewater treatment. Environ. Sci. Technol. 43: 380-385.   DOI
41 Lee S, Park S, Lee, J, Yum D, Koo B, Lee J. 2002. Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl. Environ. Microbiol. 68: 3919-3924.   DOI
42 Huang J, Petersen A, Whiteley M, Leadbetter J. 2006. Identification of QuiP, the product of gene PA1032, as the second acylhomoserine lactone acylase of Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol. 72: 1190-1197.   DOI
43 Uroz S, Chhabra S, Camara M, Williams P, Oger P, Dessaux Y. 2005. N-Acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology 151: 3313-3322.   DOI
44 Wang L, Dong Y, Zhang L. 2007. Quorum quenching: impact and mechanisms. Philos. Trans. R. Soc. 362: 1201-1211.   DOI
45 Lin Y, Xu J, Hu J, Wang L, Ong S, Leadbetter J, et al. 2003. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol. Microbiol. 47: 849-860.   DOI
46 Chowdhary P, Keshavan N, Nguyen H, Peterson J, Gonzalez J, Haines D. 2007. Bacillus megaterium CYP102A1 oxidation of acyl homoserine lactones and acyl homoserines. Biochemistry 46: 14429-14437.   DOI
47 Bijtenhoorn P, Schipper C, Hornung C, Quitschau M, Grond S, Weiland N, et al. 2011. BpiB05, a novel metagenome-derived hydrolase acting on N-acylhomoserine lactones. J. Biotechnol. 155: 86-94.   DOI
48 Bzdrenga J, Daude D, Remy B, Jacquet P, Plener L, Elias M, et al. 2017. Biotechnological applications of quorum quenching enzymes. Chem. Biol. Interact. 267: 104-115.   DOI
49 Fetzner S. 2015. Quorum quenching enzymes. J. Biotechnol. 201: 2-14.   DOI