• Title/Summary/Keyword: homologous chromosome

Search Result 76, Processing Time 0.022 seconds

Molecular Cloning of a Pepper Gene that Is Homologous to SELF-PRUNING

  • Kim, Dong Hwan;Han, Myeong Suk;Cho, Hyun Wooh;Jo, Yeong Deuk;Cho, Myeong Cheoul;Kim, Byung-Dong
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.89-96
    • /
    • 2006
  • "Determinate" and "indeterminate" inflorescences in plants are controlled by a single recessive gene, for example, SELF-PRUNING (SP) in Solanum lycopersicum, TERMINAL FLOWER1 in Arabidopsis, CENTRORADIALIS in Antirrhinum, and CENTRORADIALIS-like gene in tobacco. Pepper (Capsicum annuum L.) is an indeterminate species in which shoots grow indefinitely. In this study, we cloned and characterized the pepper SP-like gene (CaSP). RT-PCR revealed that the CaSP transcript accumulates to higher levels in floral buds than in other organs. Comparison of genomic DNA and cDNA sequences from indeterminate and determinate pepper plants revealed the insertion of a single base in the first exon of CaSP in the determinate pepper plants. CaSP is annotated in linkage group 8 (chromosome 6) of the SNU2 pepper genetic map and showed similar synteny to SP in tomato. Transgenic tobacco plants overexpressing CaSP displayed late-flowering phenotypes similar to the phenotypes caused by overexpression of CaSP orthologs in other plants. Collectively, these results suggest that pepper CaSP is an ortholog of SP in tomato.

Characterization of a Gene Encoding Diaminopimelate Decarboxylase from Rice

  • Kim, Jung-Sup;Lee, Soon-Dong
    • Animal cells and systems
    • /
    • v.10 no.4
    • /
    • pp.197-201
    • /
    • 2006
  • Diaminopimelate decarboxylase (DAPDC, EC 4.1.1.20) catalyzes the conversion of diaminopimelate into lysine (Lys), which is the last step in Lys biosynthetic pathway. The genes for DAPDC have been reported in many bacteria, and more recently in Arabidopsis. Here we report characterization of a gene for DAPDC from rice (OsDAPDC). Sequence analysis of a cDNA clone revealed a full-length open reading frame for OsDAPDC that encoded 490 amino acids, approximately 53.2 kDa protein. The OsDAPDC protein contains a consensus binding site for pyridoxal-5'-phosphate as a cofactor and has a sequence at the amino terminus that resembles a transit peptide for localization to plastids, similar to that of Arabidopsis. Single gene encoding DAPDC was found in chromosome II in rice. The predicted amino acid sequence of OsDAPDC is highly homologous to that of the enzymes for DAPDC encoded by lysA of many bacteria. Expression of OsDAPDC in lysA mutants of Escherichia coli shows that the gene is able to functionally complement the mutants. These results suggest that OsDAPDC encodes a protein for diaminopimelate decarboxylase in rice.

Molecular Basis of the Hrp Pathogenicity of the Fire Blight Pathogen Erwinia amylovora : a Type III Protein Secretion System Encoded in a Pathogenicity Island

  • Kim, Jihyun F.;Beer, Steven V.
    • The Plant Pathology Journal
    • /
    • v.17 no.2
    • /
    • pp.77-82
    • /
    • 2001
  • Erwinia amylovora causes a devastating disease called fire blight in rosaceous trees and shrubs such as apple, pear, and raspberry. To successfully infect its hosts, the pathogen requires a set of clustered genes termed hrp. Studies on the hrp system of E. amylovora indicated that it consists of three functional classes of genes. Regulation genes including hrpS, hrpS, hrpXY, and hrpL produce proteins that control the expression of other genes in the cluster. Secretion genes, many of which named hrc, encode proteins that may form a transmembrane complex, which is devoted to type III protein secretion. Finally, several genes encode the proteins that are delivered by the protein secretion apparatus. They include harpins, DspE, and other potential effector proteins that may contribute to proliferation of E. amylovora inside the hosts. Harpins are glycine-rich heat-stable elicitors of the hypersensitive response, and induce systemic acquired resistance. The pathogenicity protein DseE is homologous and functionally similar to an avirulence protein of Pseudomonas syringae. The region encompassing the hrpldsp gene cluster of E. amylovora shows features characteristic of a genomic island : a cryptic recombinase/integrase gene and a tRNA gene are present at one end and genes corresponding to those of the Escherichia coli K-12 chromosome are found beyond the region. This island, designated the Hrp pathogenicity island, is more than 60 kilobases in size and carries as many as 60 genes.

  • PDF

A refined Panax ginseng karyotype based on an ultra-high copy 167-bp tandem repeat and ribosomal DNAs

  • Waminal, Nomar Espinosa;Choi, Hong-Il;Kim, Nam-Hoon;Jang, Woojong;Lee, Junki;Park, Jee Young;Kim, Hyun Hee;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • v.41 no.4
    • /
    • pp.469-476
    • /
    • 2017
  • Background: Panax ginseng Meyer (Asian ginseng) has a large nuclear genome size of > 3.5 Gbp in haploid genome equivalent of 24 chromosomes. Tandem repeats (TRs) occupy significant portions of the genome in many plants and are often found in specific genomic loci, making them a valuable molecular cytogenetic tool in discriminating chromosomes. In an effort to understand the P. ginseng genome structure, we characterized an ultrahigh copy 167-bp TR (Pg167TR) and explored its chromosomal distribution as well as its utility for chromosome identification. Methods: Polymerase chain reaction amplicons of Pg167TR were labeled, along with 5S and 45S rDNA amplicons, using a direct nick-translation method. Direct fluorescence in situ hybridization (FISH) was used to analyze the chromosomal distribution of Pg167TR. Results: Recently, we reported a method of karyotyping the 24 chromosome pairs of P. ginseng using rDNA and DAPI (4',6-diamidino-2-phenylindole) bands. Here, a unique distribution of Pg167TR in all 24 P. ginseng chromosomes was observed, allowing easy identification of individual homologous chromosomes. Additionally, direct labeling of 5S and 45S rDNA probes allowed the identification of two additional 5S rDNA loci not previously reported, enabling the refinement of the P. ginseng karyotype. Conclusion: Identification of individual P. ginseng chromosomes was achieved using Pg167TR-FISH. Chromosome identification is important in understanding the P. ginseng genome structure, and our method will be useful for future integration of genetic linkage maps and genome scaffold anchoring. Additionally, it is a good tool for comparative studies with related species in efforts to understand the evolution of P. ginseng.

Stability of Human Centromeric Alphoid DNA Repeat during Propagation in Recombination-Deficient Yeast Strains (효모의 재조합 변이주를 이용한 인간 Centromeric Alphoid DNA Repeat의 안정성에 관한 연구)

  • Kim, Kwang-Sup;Shin, Young-Sun;Lee, Sang-Yeop;Ahn, Eun-Kyung;Do, Eun-Ju;Park, In-Ho;Leem, Sun-Hee;SunWoo, Yang-Il
    • Korean Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.243-249
    • /
    • 2007
  • The centromere is a highly differentiated structure of the chromosome that fulfills a multitude of essential mitotic and meiotic functions. Alphoid DNA (${\alpha}$-satellite) is the most abundant family of repeated DNA found at the centromere of all human chromosomes, and chromosomes of primates in general. The most important parts in the development of Human Artificial Chromosomes (HACs), are the isolation and maintenance of stability of centromeric region. For isolation of this region, we could use the targeting hook with alphoid DNA repeat and cloned by Transformation-Associated Recombination (TAR) cloning technique in yeast Saccharomyces cerevisiae. The method includes rolling-circle amplification (RCA) of repeats in vitro to 5 kb-length and elongation of the RCA products by homologous recombination in yeast. Four types of $35\;kb{\sim}50\;kb$ of centromeric DNA repeat arrays (2, 4, 5, 6 mer) are used to examine the stability of repeats in homologous recombination mutant strains (rad51, rad52, and rad54). Following the transformation into wild type, rad51 and rad54 mutant strains, there were frequent changes in inserted size. A rad52 mutant strain showed extremely low transformation frequency, but increased stability of centromeric DNA repeat arrays at least 3 times higher than other strains. Based on these results, the incidence of large mutations could be reduced using a rad52 mutant strain in maintenance of centromeric DNA repeat arrays. This genetic method may use more general application in the maintenance of tandem repeats in construction of HAC.

Studies on the G-banding Patterns of Normal and of Delayed Spiralized Chromosomes by BUdR in Dwarf Hamsters (Dwarf Hamster의 正常染色體와 BUdR에 의해 凝縮遲延된 染色體의 G-banding Pattern에 대한 硏究)

  • Hahn, Sahsook
    • The Korean Journal of Zoology
    • /
    • v.18 no.2
    • /
    • pp.71-86
    • /
    • 1975
  • The G-banding patterns of normal and of delayed spiralized chromosomes by BUdR were investigated in three established cell lines of dwarf hamsters. The results obtained were as follows: 1. The number of G-bands appeared in Chinese hamster T-233 cell line was 65. The centromeric dark band was found in No.1 chromosome and weakly stained bands were also observed in part of the centromeric regions of Nos. 2, 3, 8 and $X_2$ chromosomes. Two homologous X chromosomes were found in different banding patterns. Terminal dark bands were shown in No. 1 chromosome. No conspicuous bands appeared in No. 10 chromosome. 2. Eighty four bands appeared in Armenian hamster Y-1249 cell line. Centromeric dark bands were observed in Nos. 5 and 10 chromosomes and moderatly stained bands were also found in near the centromeric region of the long arms of Nos. 7 and 9 chromosomes. Two isomorphic X chromosomes were also distinguished by their banding patterns. 3. In Y-1313 Armenian hamster cell line, the bands were 69. No centromeric dark bands were observed in this cell line, but moderatly stained bands appeared in the centromeric area in the long arm of No. 9 chromosome. The banding patterns of these two cell lines of Armenian hamster were quite different and readily distinguished. Only No. 8 chromosome showed similar G-banding patterns. Although Nos. 5, 7 abd 8 chromosomes revealed the same number of bands in these two cell lines, the location and staining intensity were quite different. 4. Chromosomes of Nos. 1, 2, 6, $X_1$ and $X_2$ in T-233 cell line and of 1, 4, 7, 8, 9, $X_1$ and $X_2$ in both cell lines of Armenian hamster were found to be elongated due to the inhibition of mitotic spiralization by BUdR. G-banding patterns of these chromosomes were found to be identical to those of normal chromosomes in these cell lines.

  • PDF

The Karyotype of Fischoedeyius cobboldi (Poirier, 1883) from Korean Cattle (한국산 코볼드쌍구흡충의 핵형 분석)

  • Lee, Jae-Gu;Yun, Rak-Hun;Lee, Ho-Il
    • Parasites, Hosts and Diseases
    • /
    • v.26 no.2
    • /
    • pp.107-111
    • /
    • 1988
  • As a series of systematic classification of paramphistomes, the worms in the rumen and reticulum of 310 Korean cattle slaughtered at Chonju abattoir were collected from February 1986 to June 1987 and were classified by morphology of the worms. Afterwards, the karyotype of Fischoederius cobboldi (Poirier, 1883), which is a very rare species in Korean cattle, was studied with germ cells of the worm by means of modified air-drying method. The chromosome numbers in the haploid and diploid cells of 315 F. cobboldi were n=9 and 2n=18, respectively. The meiotic divisions were observed frequently; 1,904 haploid and 49 diploid cells were recognized. Nine pairs of mitotic chromosomes were homologous in the metaphase stage and the chromosomes were composed of seven medium-sized metacentrics (m) or submetacentrics (sm) and two small-sized submetacentrics (sm). While, meiotic metaphases were composed of seven medium and two small·sized chromosomes. The 3rd, 4th, 2nd and 5th pairs of chromosomes was metacentric having centromere indices of 40.4%, 40.0%, 39.7% and 38.9%, respectively, and the remaining ones were submetacentric with centromere indices from 32,4% to 36.2%. As a series of C-banding method, C-band was shown in centromeric region from all of the haploid germ cells, except chromosome No. 1 which included heterochromatin at the tip region. Chromosomes No, 4, 6 and 9 showed remarkable C-band distinguished from others.

  • PDF

A Molecular Sex Identification Using Duplex PCR Method for SRY and ZFX-ZFY Genes in Red Deer and Elk (붉은사슴과 엘크에서 SRY와 ZFX-ZFY 유전자의 Duplex PCR기법을 이용한 성 판별)

  • Han, S.H.;Lee, S.S.;Ko, M.S.;Cho, I.C.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • This study was focused on discriminating the molecular sexes of red deer and elk by duplex polymerase chain reaction(PCR) using two primer sets. Sex differentiation of mammals is primarily dependent on the presence or absence of sex determining region Y(SRY) gene encoded on Y chromosome which plays a key role for male development. Zinc finger X-Y(ZFX-ZFY) gene, one of X-Y homology gene group was found on X- and Y- chromosomes, respectively. At first, the nucleotide sequences were characterized for the intron 9 flanking region of ZFX-ZFY genes. The intron 9 of ZFX and ZFY is 529-bp and 665-bp in length, respectively. A transposable element sequence similar to bovine SINE element Bov-tA was detected only in ZFY gene of Cervidae. Sexing analysis was conducted by duplex PCR assay for amplification of SRY and ZFX-ZFY genes. Two differentially amplified patterns were found: one for females has a common band amplified only from ZFX as a template, and another for males had three bands(a common ZFX and two male-specific ZFY and SRY). On the separate tests using each gene, the results was identical to those from duplex PCR assay. Moreover, the results from PCR assays provide also identical information to phenotypic investigation of individuals of red deer, elk as well as their hybridized progenies collected from two isolated farms. These results suggest that it may be a rapid and precise method for determining the sexes by duplex PCR amplification using Y-chromosome specific SRY and X- and Y- homologous ZFX-ZFY genes showing sexual dimorphism in red deer and elk without any other controls.

Chromosomal Localization and Distribution of the Telomeric DNA in Cattle and Pigs (소, 돼지 염색체의 telomeric DNA 분포 양상)

  • Sohn, S.H.;Multani, A.S.;Pathak, S.;Cho, E.J.;Ha, H.B.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.547-554
    • /
    • 2004
  • Telomeres are nucleoprotein structures at the ends of chromosomes consisting of tandem repeat sequences of . (TTAGGG)n. Telomeres serve as guardians of the genome, protect individual chromosomes within the nucleus, and help in meiotic pairing of homologous chromosomes. To investigate the telomere distributions of cattle and pig chromosomes, fluorescence in situ hybridization(FISH) was carried out on metaphase spreads of in vitro fibroblast cultures from Holstein and Landrace using a human telomeric DNA repeat probe. Results indicate that the distinct double spots on both ends of chromosomes of cattle and pigs were observed. In cattle, there was a random variation in the intensity of telomere signals among chromosomes. In pigs, an interstitial telomeric signal was observed on the chromosome 6q1 of all the cells examined. According to quantitative fluorescence in situ hybridization(Q-FISH) analysis, some chromosomes had consistently much more telorneres at one end of chromosomes. In general, both species had consistently much more telomeres at q-end than p-end on most of chromosomes. The relative amount of telomeres on bovine chromosomes was higher than that on pig chromosomes. In additions, Y chromosome had the highest relative amount of telorneres in cattle and pigs.

Isolation of Human and Mouse Orthologue HPRT Genes by Transformation-Associated Recombination (TAR) cloning (TAR cloning 법에 의한 인간 및 마우스의 상동성 HPRT 유전자의 분리)

  • Do, Eun-Ju;Kim, Jae-Woo;Chung, Chung-Nam;Park, In-Ho;Leem, Sun-Hee
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.1036-1043
    • /
    • 2006
  • The transformation-associated recombination (TAR) cloning technique allows selective isolation of chromosome regions or genes from complex genome. The procedure requires knowledge of relatively small genomic sequences that reside adjacent to the chromosome region of interest. This method involves homologous recombination during spheroplast transformation between genomic DNA and a TAR vector that has 5' and 3' gene targeting sequences (hooks). To examine whether TAR cloning can be applied to the isolation of gene homologues, we chose the HPRT genes from human and mouse genome. As results, the yield of positive clones for HPRT gene from human and mouse genome when using a TAR vector containing mHPRT hook or hHPRT hook was almost same level. Analysis of the gap regions in mHPRT revealed that they contain abnormalities that could result in instability of the sequences. In conclusion, we were able to use the TAR cloning technology to isolate gene homologue (orthologue) from nonidentical genome. Moreover, the use of the TAR cloning system may accelerate work on closing the remaining gaps in mammalian genome to achieve the goal of annotation of all mammalian genes.