• Title/Summary/Keyword: homogenization

Search Result 656, Processing Time 0.024 seconds

Study on the Temperature and the Origin of Mineralization at the Samkwang Au Deposits (삼광(三光) 금(金) 광상(鑛床)의 광화(鑛化) 온도(溫度) 및 근원(根源)에 관關(한) 연구(硏究))

  • Moon, Kun Joo
    • Economic and Environmental Geology
    • /
    • v.19 no.1
    • /
    • pp.19-24
    • /
    • 1986
  • The Samkwang mine is one of gold deposits distributed mainly in the southwestern province (Chungnam) of the Korean peninsula. Golds occur in quartz veins aged of $223{\pm}4MA$ according to K-Ar age dating from muscovite in a pegmatitic quartz vein. Quantz veins intrude Precambrian biotite-granite gneiss and mica schist of unknown age. Fluid inclusions in the quartz show a range of homogenization temperatures from 159 to $274^{\circ}C$. A calculated temperature from the isotopes of the galena-sphalerite pair is $375^{\circ}C$. Two phases-fluid inclusions homogenized either by liquid or vapor phase are frequently observed in specimens over $260^{\circ}C$, which may indicate the boiling of the fluids. Pressure of formation of the quartz veins inferred by the homogenization temperatures of liquid-$CO_2$ bearing fluid is 1kb. Based on these data, it is assumed that the temperature of the formation of the Samkwang mine may lie in between $350^{\circ}-230^{\circ}C$. ${\delta}^{34}S_{{\Sigma}s}$ values of sulphide minerals show narrow range of +2.1 to +4.6, and show a trend of enrichments of $^{34}S$ in the fluid from deep to the surface. ${\delta}^{34}S_{{\Sigma}s}$ in the fluid estimated is less than 3 permil, suggesting sulphur fluid originated from the magma.

  • PDF

Miscibility of Branched Polycarbonate Blends with Poly(ethylene-co-1,4-dimethyl cyclohexane terephthalate) Copolyesters

  • Song, Jeong-Oh;Jeon, Mi-Young;Kim, Chang-Keun
    • Macromolecular Research
    • /
    • v.15 no.7
    • /
    • pp.640-645
    • /
    • 2007
  • The phase behavior of branched polycarbonate (BPC) blends with poly(ethylene terephthalate-co-1,4-dimethyl cyclohexane terephthalate) copolyesters (PECT), as well as their rheological properties, were assessed. Even though BPC blends with PECT prepared by solvent casting proved to be immiscible, BPC and PECT copolyesters containing 1,4-dimethyl cyclohexane (CHDM) from 32 to 80 mole% formed homogeneous mixtures upon heating. The homogenization temperatures of the blends decreased with increasing CHDM content in PECT. The interaction energies of the BPC-PECT pairs calculated from the phase boundary in accordance with the lattice-fluid theory were positive and also decreased with increasing CHDM content in PECT. It was shown that the phase homogenization of these blends occurs upon heating when the combinatorial entropy term, which is favorable for miscibility, overcomes unfavorable energetic terms at elevated temperatures. A novel product, which is not limited by the drawbacks of linear polycarbonate (PC) and evidences processability superior to that of the PC/PECT blends, can be developed via the blending of BPC and PECT.

Neutronics analysis of TRIGA Mark II research reactor

  • Rehman, Haseebur;Ahmad, Siraj-ul-Islam
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.35-42
    • /
    • 2018
  • This article presents clean core criticality calculations and control rod worth calculations for TRIGA (Training, Research, Isotope production-General Atomics) Mark II research reactor benchmark cores using Winfrith Improved Multi-group Scheme-D/4 (WIMS-D/4) and Program for Reactor In-core Analysis using Diffusion Equation (PRIDE) codes. Cores 133 and 134 were analyzed in 2-D (r, ${\theta}$) and 3-D (r, ${\theta}$, z), using WIMS-D/4 and PRIDE codes. Moreover, the influence of cross-section data was also studied using various libraries based on Evaluated Nuclear Data File (ENDF/B-VI.8 and VII.0), Joint Evaluated Fission and Fusion File (JEFF-3.1), Japanese Evaluated Nuclear Data Library (JENDL-3.2), and Joint Evaluated File (JEF-2.2) nuclear data. The simulation results showed that the multiplication factor calculated for all these data libraries is within 1% of the experimental results. The reactivity worth of the control rods of core 134 was also calculated with different homogenization approaches. A comparison was made with experimental and reported Monte Carlo results, and it was found that, using proper homogenization of absorber regions and surrounding fuel regions, the results obtained with PRIDE code are significantly improved.

Micro-Mechanical Approach for Spanwise Periodically and Heterogeneously Beam-like Structures

  • Lee, Chang-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.3
    • /
    • pp.9-16
    • /
    • 2016
  • This paper discusses a refined model for investigating the micro-mechanical behavior of beam-like structures, which are composed of various elastic moduli and complex geometries varying through the cross-section directions and are also periodically-repeated and heterogeneous along the axial direction. Following the previous work (Lee and Yu, 2011), the original three-dimensional static problem is first formulated in a unified and compact form using the concept of decomposition of the rotation tensor. Taking advantage of the smallness of the cross-sectional dimension-to-length parameter and the micro-to-macro heterogeneity, while also performing homogenization along the dimensional reduction simultaneously, the variational asymptotic method is rigorously used to construct a total energy function, which is asymptotically correct up to the second order. Furthermore, through the transformation procedure based on the pure kinematic relations and the linearized equilibrium equations, a generalized Timoshenko model is systematically established. For the purpose of dealing with realistic and complex geometries and constituent materials at the microscopic level, this present approach is incorporated into a commercial analysis package. A few examples available in literature are used to demonstrate the consistency and efficiency of this proposed model, especially for the structures, in which the effects of transverse shear deformations are significant.

Variation of Alloying Element Distribution and Microstructure due to Microsegregation in Ni-base Superalloy GTD 111 (니켈기 초내열 합금 GTD 111에서 편석에 의한 합금원소 분포 및 미세조직 변화)

  • Choi, Baig-Gyu;Kim, In-Soo;Do, Jeong-Hyeon;Jung, Joong-Eun;Jo, Chang-Yong
    • Journal of Korea Foundry Society
    • /
    • v.35 no.6
    • /
    • pp.170-177
    • /
    • 2015
  • Segregation during solidification and homogenization during thermal exposure in GTD 111 were investigated. The microstructures of as-cast, standard heat-treated, and thermally exposed specimens were observed by SEM. A compositional analysis of each specimen was conducted by EDS. The dendrite core was enriched in W and Co, though lower levels of Ti and Ta were observed. An unexpected phase, in this case like the ${\eta}$ phase, was observed due to segregation near the ${\gamma}-{\gamma}^{\prime}$ eutectic in the standard heat-treated specimen. Segregation also induced microstructural evolution near the ${\gamma}-{\gamma}^{\prime}$ eutectic during the standard heat treatment. A quantitative analysis and microstructural observations showed that the thermal exposure at a high temperature enhanced the chemical homogeneity of the alloy.

Topology Optimization of Element Removal Method Using Stress Density (응력량을 이용한 요소제거법의 위상최적화)

  • 임오강;이진식;김창식
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Topology optimization has been evolved into a very efficient conceptual design tool and has been utilized into design engineering processes. Traditional topology optimization has been using homogenization method and optimality criteria method. homogenization method provides relationship equation between structure which includes many holes and stiffness matrix in FEM. Optimality criteria method is used to update design variables while maintaining that volume fraction is uniform. Traditional topology optimization has advantage of good convergence but has disadvantage of too much convergency time. In one way to solve this problem, element removal method using the criterion of an average stress is presented. As the result of examples, it is certified that convergency time is very reduced.

Topology Design Optimization using Projection Method (프로젝션 기법을 활용한 위상 최적설계)

  • Ha, Seung-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.4
    • /
    • pp.293-299
    • /
    • 2016
  • In this paper, a projection method is introduced which is used in topology design optimization. In the projection method, each active design variable is projected onto the design domain depending on the shape and size of the projection functions, and the finite element under this projection receives a solid material. Furthermore, the size of the projection function defines the minimum length scale of the structural members. Therefore, a designer can easily apply design constraints without complicated post-processing procedure. In addition, the projection method can be combined with the homogenization theory, and applied to material design problem for composite materials. Topology design optimization for the unit-cell of the periodic structures can maximize the effective material properties, which yields the optimal material distribution with maximum bulk or shear moduli under a given volume fraction.

The Prediction of Elastic Behavior of the Nano-Sized Honeycombs Based on the Continuum Theory (연속체 이론을 기반으로 한 나노 허니콤 구조물의 탄성 거동 예측)

  • Lee, Yong-Hee;Jeong, Joon-Ho;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.413-419
    • /
    • 2011
  • The nano-size hoenycomb structures have the higher ratio of the surface to the volume than macro-size honeycomb structures, and they can maximize the functionality of the electrical and chemical catalyst. The mechanical behaviors of the nano-sized structures are different from ones of the macro-size structure, and it is caused by the surface effect. This surface effect can be investigated by the atomistic simulation; however, the prediction of mechanical behaviors of the nano-sized honeycombs are practically impossible due to excessive computational resources and computation time. In this paper, by combining the bridging method considering the surface stress elasticity model with homogenization method, the mechanical behaviors of the nano-sized honeycombs are predicted efficiently.

Evaluation of homogenized thermal conductivities of imperfect carbon-carbon textile composites using the Mori-Tanaka method

  • Vorel, Jan;Sejnoha, Michal
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.429-446
    • /
    • 2009
  • Three-scale homogenization procedure is proposed in this paper to provide estimates of the effective thermal conductivities of porous carbon-carbon textile composites. On each scale - the level of fiber tow (micro-scale), the level of yarns (meso-scale) and the level of laminate (macro-scale) - a two step homogenization procedure based on the Mori-Tanaka averaging scheme is adopted. This involves evaluation of the effective properties first in the absence of pores. In the next step, an ellipsoidal pore is introduced into a new, generally orthotropic, matrix to make provision for the presence of crimp voids and transverse and delamination cracks resulting from the thermal transformation of a polymeric precursor into the carbon matrix. Other sources of imperfections also attributed to the manufacturing processes, including non-uniform texture of the reinforcements, are taken into consideration through the histograms of inclination angles measured along the fiber tow path together with a particular shape of the equivalent ellipsoidal inclusion proposed already in Sko ek (1998). The analysis shows that a reasonable agreement of the numerical predictions with experimental measurements can be achieved.

A Study on Topology Optimization of Table Liner for Vertical Roller Mill using Homogenization Method (균질화법을 이용한 수직형 롤러 분쇄기용 테이블 라이너의 위상최적설계에 관한 연구)

  • 이동우;홍순혁;조석수;이선봉;주원식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.113-122
    • /
    • 2003
  • Topology optimization is begun with layout optimization that is attributed to Rozvany and Prager of the 1960's. They claimed that structure was transformed into truss connecting all the nodes of finite element and optimized by control of its sectional modulus. But, this method is partial topology optimization. General layout optimal design appliable to continum structure was proposed by Bendsoe and Kikuchi in 1988. Topology optimization expresses material stiffness of structure into function of arbitrary variable. If this variable is 1, material exists but if this variable is 0, material doesn't exist. Therefore, topology optimization searches the distribution function of material stiffness for structure. There are a few researchs for simple engineering problem such as topology optimization of square plane structure or truss structure. So, This study applied to topology optimization of table liner for vertical roller mill that is the largest scale in the world. After table liner decreased by 20% of original weight, the structure analysis for first optimized model was performed.