• Title/Summary/Keyword: homogenization

Search Result 656, Processing Time 0.024 seconds

Sintering Behavior of (Ti+Ni) Powder Mixture during Spark-Plasma Sintering (방전플라즈마소결에 있어서의 (Ti+Ni) 혼합불말의 소결거동)

  • 김지순;양석균;정순호;강지훈;권영순
    • Journal of Powder Materials
    • /
    • v.11 no.1
    • /
    • pp.55-59
    • /
    • 2004
  • TiNi bodies were produced from (Ti+Ni) powder mixture by spark-plasma sintering procerg. The sintering behavior was investigated through the measurement of change in density, densification rate, phase analysis and microstructure. Irrespective of heating rate, sintered bodies with above 97% relative density could be obtained. TiNi with B2 structure was confirmed as the major phase and $Ti_2Ni,\;TiNi_3$, unreacted Ti, Ni as the second phase. Increase in heating rate suppressed a formation of intermediate phase during sintering process. Increase in holding time at sintering temperature led to a compositional homogenization.

Effective mechanical properties of micro/nano-scale porous materials considering surface effects

  • Jeong, Joonho;Cho, Maenghyo;Choi, Jinbok
    • Interaction and multiscale mechanics
    • /
    • v.4 no.2
    • /
    • pp.107-122
    • /
    • 2011
  • Mechanical behavior in nano-sized structures differs from those in macro sized structures due to surface effect. As the ratio of surface to volume increases, surface effect is not negligible and causes size-dependent mechanical behavior. In order to identify this size effect, atomistic simulations are required; however, it has many limitations because too much computational resource and time are needed. To overcome the restrictions of the atomistic simulations and graft the well-established continuum theories, the continuum model considering surface effect, which is based on the bridging technique between atomistic and continuum simulations, is introduced. Because it reflects the size effect, it is possible to carry out a variety of analysis which is intractable in the atomistic simulations. As a part of the application examples, the homogenization method is applied to micro/nano thin films with porosity and the homogenized elastic coefficients of the nano scale thickness porous films are computed in this paper.

Plastic Deformation Behavior of Al6061 depending on Heat Treatment Condition (연속주조 Al6061 합금의 열처리에 따른 소성변형거동)

  • Park J. H.;Kwon Y. N.;Lee Y. S.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.127-130
    • /
    • 2004
  • In the recent years, lightweight components fabricated with aluminum alloys have been applied into building the automobiles. Among the several competing fabrication methods, hot forging is taken as the most reliable technique to produce suspension parts such as control arms. Generally, Al forging products have been used widely for the aircraft building with the extruded stock as a starting material. For the economical base, however, the cast stocks turn to be as the forging stocks recently after a continuously casting technique was developed to produce quite a uniform microstructure enough to use for the forging process. Even more, there is a tendency to omit the homogenization step before forging, which is considered to be an indispensable process for all kinds of Al alloy, In the present study, a series of compression test was carried out to find out how the cast structure and the following heat treatments influence the deformation behavior, that is, forging characteristic.

  • PDF

On the continuum formulation for modeling DNA loop formation

  • Teng, Hailong;Lee, Chung-Hao;Chen, Jiun-Shyan
    • Interaction and multiscale mechanics
    • /
    • v.4 no.3
    • /
    • pp.219-237
    • /
    • 2011
  • Recent advances in scientific computing enable the full atomistic simulation of DNA molecules. However, there exists length and time scale limitations in molecular dynamics (MD) simulation for large DNA molecules. In this work, a two-level homogenization of DNA molecules is proposed. A wavelet projection method is first introduced to form a coarse-grained DNA molecule represented with superatoms. The coarsened MD model offers a simplified molecular structure for the continuum description of DNA molecules. The coarsened DNA molecular structure is then homogenized into a three-dimensional beam with embedded molecular properties. The methods to determine the elasticity constants in the continuum model are also presented. The proposed continuum model is adopted for the study of mechanical behavior of DNA loop.

Acceleration method of fission source convergence based on RMC code

  • Pan, Qingquan;Wang, Kan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1347-1354
    • /
    • 2020
  • To improve the efficiency of MC criticality calculation, an acceleration method of fission source convergence which gives an improved initial fission source is proposed. In this method, the MC global homogenization is carried out to obtain the macroscopic cross section of each material mesh, and then the nonlinear iterative solution of the SP3 equations is used to determine the fission source distribution. The calculated fission source is very close to the real fission source, which describes its space and energy distribution. This method is an automatic computation process and is tested by the C5G7 benchmark, the results show that this acceleration method is helpful to reduce the inactive cycles and overall running time.

Flavor development in cheddar cheese (체다 치즈의 맛의 개발)

  • Jeong, Cheong-Song;Yu, Sang-Hun
    • Proceedings of the Korea Hospitality Industry Research Society Conference
    • /
    • 2003.05a
    • /
    • pp.19-35
    • /
    • 2003
  • This study was carried out to find a cholesterol removal rate, flavor development, and bitter amino acid productions in Cheddar cheese treated with -cyclodextrin (${\beta}-CD$): 1) Control (no homogenization, no ${\beta}--CD$), and 2) Milk treatment (1000 psi milk homogenization, 1% ${\beta}-CD$). The cholesterol removal of the cheese were 79.3%. The production of short-chain free fatty acids (FFA) increased with a ripening time in both control and milk treated cheese. The releasing quantity of short-chain FFA was higher din milk treated cheese than control at 5 and 7 mo ripening. Not much difference was found in neutral volatile compounds production between samples. In bitter-tasted amino acids, milk treatment group produced much higher than control. In sensory analysis, texture score of control Cheddar cheese significantly increased, however, that in cholesterol-reduced cheese decreased dramatically with ripening time.

  • PDF

Evaluation of strength of waste material mixed concrete using digital image (디지털이미지를 이용한 폐기물 혼합 콘크리트의 강도 평가)

  • Yoon, Hyun-Suk;Lee, Ki-Ho;Park, Jun-Boum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1390-1395
    • /
    • 2005
  • To analyze the effects of oyster shell particles, inserted in the self-hardening matrix such as cement paste, on strength, homogenization analysis using micro structure was used to estimate and assess the apparent elastic modulus of oyster shell particle. DIB modeling technique was used to represent of the micro structure of oyster shell mixed concrete. The results showed that the apparent elastic modulus of LOS (large oyster shell particle) was changed with the amount of LOS inserted. In particular, when the amount of LOS was 200% of the weight of cement, the apparent elastic modulus of LOS tended to decrease rapidly. This could mean that the strength of oyster shell mixed concrete is much affected by LOS inserted material in mixed ratio of 200%.

  • PDF

Constitutive Equations for Three Dimensional Circular Braided Glass Fiber Reinforced Composites Using Cell Modeling Method (셀 방법을 이용한 3차원 원형 브레이드 유리 섬유 강화 복합 재료의 구성 방정식)

  • 이원오;정관수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.71-74
    • /
    • 2003
  • The cell modeling homogenization method to derive the constitutive equation considering the microstructures of the fiber reinforced composites has been previously developed for composites with simple microstructures such as 2D plane composites and 3D rectangular shaped composites. Here, the method has been further extended for 3D circular braided composites, utilizing B-spline curves to properly describe the more complex geometry of 3D braided composites. For verification purposes, the method has been applied for orthotropic elastic properties of the 3D circular braided glass fiber reinforced composite, in particular for the tensile property. Prepregs of the specimen have been fabricated using the 3D braiding machine through RTM (resin transfer molding) with epoxy as a matrix. Experimentally measured uniaxial tensile properties agreed well with predicted values obtained fer two volume fractions.

  • PDF

Derivation of Equivalent Material Properties of Induction Motor Windings Based on Homogenization Method (균질화기법에 기초한 유도전동기 권선 다발의 등가물성 유도)

  • Bae Jing-Do;Ko Woo-Sik;Cho Jin-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.518-525
    • /
    • 2005
  • The electromagnetic noise generates when natural frequencies of a stator core with wingdings and frame coincide with or approach natural frequencies of the magnetic motive force. In order to suppress such noise, the estimation of natural frequencies of the motor is important at the design stage. However, the natural frequency analysis is not so easy because motor stator is in the laminated plate structure and windings are composed of wires, insulation sheets and vanishs. Thus the accurate prediction of the equivalent material properties of windings becomes an essential task. In this paper, we derive the equivalent material properties using homogenization methods.

Vibration Analysis of Longitudinally Corrugated Cylindrical Shells (길이방향으로 주름진 원통셸의 진동 해석)

  • Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.851-856
    • /
    • 2016
  • In this paper, the free vibration characteristics of longitudinally corrugated cylindrical shells is investigated by the theoretical analysis. The equivalent homogenization model is adapted to investigate the overall mechanical behavior of these corrugated shells. The corrugated element can be represented as an orthotropic material. Both the effective extensional and flexural stiffness of this equivalent orthotropic material are considered in the analysis. To demonstrate the validity of the proposed theoretical approach, the theoretical results are compared with those from 3D finite element analysis using ANSYS commercial code. Some numerical results are presented to check the effect of the geometric properties.