• Title/Summary/Keyword: homogenization

Search Result 646, Processing Time 0.028 seconds

Determination of the Representative Elementary Volume of Granite by Using Homogenization Theory (균질화법을 이용한 화강암의 대표요소체적 산정에 환한 연구)

  • 서용석;도미란;오대열;홍성완;배규진;김교원
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.55-61
    • /
    • 2000
  • For proper sampling of a rock and preparation of specimens, the representative elementary volume (REV) should be determined in rock mechanical test and numerical analysis. Mechanical properties of a rock, in general, would be strongly affected by mineral composition. In this reason REV of Youngju granite is determined by using stereoscopic microscope observation and homogenization numerical analysis. As the area of analysis model exceeds approximately 702 $ extrm{mm}^2$(900 elements), the change of the mineral composition is not observed. The calculated results indicate that Young's modulus is fluctuated with increase of the number of elements in homogenization numerical analysis mesh. However, as the number of elements exceeds 1156 (area of about 900 $ extrm{mm}^2$), Young's modulus does not change apparently.

  • PDF

Determination of the Representative Elementary Volume of Granite by Using Homogenization Theory (균질화법을 이용한 화강암의 대표요소체적 산정에 관한 연구)

  • 서용석;도미란;오대열;홍성완;배규진;김교원
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.309-315
    • /
    • 2000
  • For proper sampling of a rock and preparation of specimens, the representative elementary volume (REV) should be determined in rock mechanical test and numerical analysis. Mechanical properties of a rock, in general, would be strongly affected by mineral composition. In this reason REV of Youngju granite is determined by using stereoscopic microscope observation and homogenization numerical analysis. As the area of analysis model exceeds approximately 702$\textrm{mm}^2$(900 elements), the change of the mineral composition is not observed. The calculated results indicate that Young's modulus is fluctuated with increase of the number of elements in homogenization numerical analysis mesh. However, as the number of elements exceeds 1156 (area of about 900$\textrm{mm}^2$), Young's modulus does not change apparently.

  • PDF

Improved stress analyses of dental systems implant by homogenization technique (균질화기법을 이용한 치과 임플란트 시스템의 응력해석)

  • Koh, Chul-Su;Lee, Man-Sup;Choi, Kui-Won
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.1
    • /
    • pp.263-290
    • /
    • 1997
  • Homogenization technique is employed to investigate the series of stress analyses of mandible for three different types of dental implants. This technique helps to make proper material model of bone and analyze such a non homogeneous structure at the level of individual microstructural unit. The stress analyses with homogenization technique show much higher stress level in the sponge bone, compared to those of conventional FEM. It also manifested that even a minor lateral force results in crucial stresses in the dental implant system and that the macroscale model should take the shape and size after real mandible to produce reasonable solution in the analyses of dental implant systems. The shapes of dental implants simulated in this study are rectangular-cross-sectioned type, hemi-sphere rooted type, and wedge type implant. The stress states of mandible with hemisphere rooted type implant and wedge type implant show similar levels, while those with sectioned rectangular implant results in higher stresses. It is suggested that the distance between the implant tip and cortical bone be kept far enough to prevent stress concentrations in the mandible.

  • PDF

A novel porosity-based homogenization scheme for propagation of waves in axially-excited FG nanobeams

  • Ebrahimi, Farzad;Dabbagh, Ali
    • Advances in nano research
    • /
    • v.7 no.6
    • /
    • pp.379-390
    • /
    • 2019
  • Putting emphasis on the effect of existence of porosity in the functionally graded materials (FGMs) on the dynamic responses of waves scattered in FG nanobeams resulted in implementation of a novel porosity-based homogenization method for FGMs and show its applicability in a wave propagation problem in the presence of axial pre-load for the first time. In the employed porosity-dependent method, the coupling between density and Young's moduli is included to consider for the effective moduli of the FG nanobeam by the means of a more reliable homogenization technique. The beam-type element will be modeled via the classical theory of beams, namely Euler-Bernoulli beam theory. Also, the dynamic form of the principle of virtual work will be extended for such nanobeams to derive the motion equations. Applying the nonlocal constitutive equations of Eringen on the obtained motion equations will be resulted in derivation of the nanobeam's governing equations. Depicted results reveal that the dispersion responses of FG nanobeams will be decreased as the porosity volume fraction is increased which must be noticed by the designers of advanced nanosize devices who are interested in employment of wave dispersion approach in continuous systems for specific goals.

Vibration Analysis of Stiffened Corrugated Composite Plates (보강된 적층 복합재료 주름판의 진동해석)

  • Park, Kyung-Jo;Kim, Young-Wann
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.377-382
    • /
    • 2020
  • The free vibration characteristics of corrugated laminated composite plates with axial stiffeners is investigated using the Rayleigh-Ritz method. The plate is stiffened by beams with open cross-section area. The equivalent homogenization model is used for the corrugated laminated composite plates. This homogenization model is treated a corrugated plate as an orthotropic plate that has different material properties in two perpendicular directions. The motion of equivalent plate is represented on the basis of the first order shear deformation theory (FSDT) to account for the effect of rotary inertia and transverse shear deformation. Stiffeners are considered as discrete elements to predict the local vibration mode to be generated by the presence of stiffeners. To validate the proposed analytical approach, natural frequencies and vibration mode shapes from the analytical method are compared with those from the FEA by ANSYS.

Characterization of Extrusion Parts for after Pre-aging Treatment in an Al-4.8Zn-1.3Mg Alloy (안정화 열처리에 의한 Al-4.8Zn-1.3Mg계 합금 압출재 특성 평가)

  • Lee, Chang-Yeon
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.818-823
    • /
    • 2018
  • In this study, the effect of pre-aging treatment for inhibition of natural aging of Al-4.8Zn-1.3Mg alloy by extrusion process was investigated. Firstly, the as-cast microstructure of Al-4.8Zn-1.3Mg alloy billet and its evolution during homogenization($460^{\circ}C$, $4h+510^{\circ}C$, 5h) were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), hardness analysis. The as-cast microstructures of Al-4.8Zn-1.3Mg alloy reveal $Mg_2Zn$, $Al_5Cu$, $Al_{13}Cu$ formed between dendrities. After homogenization, MgZn, $Al_4Cu$, $Al_{13}Cu$ phases precipitated into the matrix. In addition, standard deviation of homogenized billet was improved than as-cast billet from 2.62 to 0.99. According to pre-aging($100^{\circ}C$, 1h) Al-4.8Zn-1.3Mg alloy by extrusion process, yield strength and tensile strength deviation improved more than condition by natural aging.

Microfracture Mechanism and Fracture Properties of Ni-Mn-Ga-Fe Ferromagnetic Shape Memory Alloys (Ni-Mn-Ga-Fe 강자성 형상기억합금의 미세파괴기구 및 파괴성질)

  • Euh, Kwangjun;Lee, Jung-Moo;Nam, Duk-Hyun;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.12
    • /
    • pp.787-796
    • /
    • 2009
  • The fracture toughness improvement of Ni-Mn-Ga-Fe ferromagnetic shape memory alloys containing ductile particles was explained by direct observation of microfracture processes using an in situ loading stage installed inside a scanning electron microscope (SEM) chamber. The Ni-Mn-Ga-Fe alloys contained a considerable amount of ductile particles in the grains after the homogenization treatment at $800{\sim}1100^{\circ}C$. ${\gamma}$ particles were coarsened and distributed homogeneously along {$\beta}$ grain boundaries as well as inside {$\beta}$ grains as the homogenization temperature increased. The in situ microfracture observation results indicated that ${\gamma}$ particles effectively acted as blocking sites of crack propagation, and provided stable crack growth that could be confirmed by the R-curve analysis. This increase in fracture resistance with increasing crack length improved overall fracture properties of the alloys containing ${\gamma}$ particles.

Tailoring fabric geometry of plain-woven composites for simultaneously enhancing stiffness and thermal properties

  • Zhou, Xiao-Yi;Wang, Neng-Wei;Xiong, Wen;Ruan, Xin;Zhang, Shao-Jin
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.489-499
    • /
    • 2022
  • This paper proposes a numerical optimization method to design the mesoscale architecture of textile composite for simultaneously enhancing mechanical and thermal properties, which compete with each other making it difficult to design intuitively. The base cell of the periodic warp and fill yarn system is served as the design space, and optimal fibre yarn geometries are found by solving the optimization problem through the proposed method. With the help of homogenization method, analytical formulae for the effective material properties as functions of the geometry parameters of plain-woven textile composites were derived, and they are used to form the inverse homogenization method to establish the design problem. These modules are then put together to form a multiobjective optimization problem, which is formulated in such a way that the optimal design depends on the weight factors predetermined by the user based on the stiffness and thermal terms in the objective function. Numerical examples illustrate that the developed method can achieve reasonable designs in terms of fibre yarn paths and geometries.

Multigroup cross-sections generated using Monte-Carlo method with flux-moment homogenization technique for fast reactor analysis

  • Yiwei Wu;Qufei Song;Kuaiyuan Feng;Jean-Francois Vidal;Hanyang Gu;Hui Guo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2474-2482
    • /
    • 2023
  • The development of fast reactors with complex designs and operation status requires more accurate and effective simulation. The Monte-Carlo method can generate multi-group cross-sections in arbitrary geometry without approximation on resonances treatment and leads to good results in combination with diffusion codes. However, in previous studies, the coupling of Monte-Carlo generated multi-group cross-sections (MC-MGXS) and transport solvers has shown relatively large biases in fast reactor problems. In this paper, the main contribution to the biases is proved to be the neglect of the angle-dependence of the total cross-sections. The flux-moment homogenization technique (MHT) is proposed to take into account this dependence. In this method, the angular dependence is attributed to the transfer cross-sections, keeping an independent form for the total sections. For the MET-1000 benchmark, the multi-group transport simulation results with MC-MGXS generated with MHT are improved by 700 pcm and an additional 120 pcm with higher order scattering. The factors that cause the residual bias are discussed. The core power distribution bias is also significantly reduced when MHT is used. It proves that the MCMGXS with MHT can be applicable with transport solvers in fast reactor analysis.

Homogenized Elastic-plastic Relation based on Thermodynamics and Strain Localization Analyses for Particulate Composite (열역학 기반 내부 변수를 이용한 균질화 탄소성 구성방정식 및 입자강화 복합재에서의 소성변형집중)

  • S. J. Yun;K. K. Kim
    • Transactions of Materials Processing
    • /
    • v.33 no.1
    • /
    • pp.18-35
    • /
    • 2024
  • In the present work, the evolution rules for the internal variables including continuum damage factors are obtained using the thermodynamic framework, which are in turn facilitated to derive the elastic-plastic constitutive relation for the particulate composites. Using the Mori-Tanaka scheme, the homogenization on state and internal variables such as back-stress and damage factors is carried out to procure the rate independent plasticity relations. Moreover, the degradation of mechanical properties of constituents is depicted by the distinctive damages such that the phase and interfacial damages are treated individually accordingly, whereas the kinematic hardening is depicted by combining the Armstrong-Frederick and Phillips' back-stress evolutions. On the other hand, the present constitutive relation for each phase is expressed in terms of the respective damage-free effective quantities, then, followed by transformation into the damage affected overall nominal relations using the aforementioned homogenization concentration factors. An emphasis is placed on the qualitative analyses for strain localization by observing the perturbation growth instead of the conventional bifurcation analyses. It turns out that the proposed constitutive model offers a wide range of strain localization behavior depending on the evolution of various internal variable descriptions.