Ni-Mn-Ga-Fe 강자성 형상기억합금의 미세파괴기구 및 파괴성질

Microfracture Mechanism and Fracture Properties of Ni-Mn-Ga-Fe Ferromagnetic Shape Memory Alloys

  • 어광준 (재료연구소 구조재료연구본부) ;
  • 이정무 (재료연구소 구조재료연구본부) ;
  • 남덕현 (포항공과대학교 항공재료연구센터) ;
  • 이성학 (포항공과대학교 항공재료연구센터)
  • Euh, Kwangjun (Structural Materials Division, Korea Institute of Materials Science) ;
  • Lee, Jung-Moo (Structural Materials Division, Korea Institute of Materials Science) ;
  • Nam, Duk-Hyun (Center for Advanced Aerospace Materials, Pohang University of Science and Technology) ;
  • Lee, Sunghak (Center for Advanced Aerospace Materials, Pohang University of Science and Technology)
  • 투고 : 2009.07.22
  • 발행 : 2009.12.20

초록

The fracture toughness improvement of Ni-Mn-Ga-Fe ferromagnetic shape memory alloys containing ductile particles was explained by direct observation of microfracture processes using an in situ loading stage installed inside a scanning electron microscope (SEM) chamber. The Ni-Mn-Ga-Fe alloys contained a considerable amount of ductile particles in the grains after the homogenization treatment at $800{\sim}1100^{\circ}C$. ${\gamma}$ particles were coarsened and distributed homogeneously along {$\beta}$ grain boundaries as well as inside {$\beta}$ grains as the homogenization temperature increased. The in situ microfracture observation results indicated that ${\gamma}$ particles effectively acted as blocking sites of crack propagation, and provided stable crack growth that could be confirmed by the R-curve analysis. This increase in fracture resistance with increasing crack length improved overall fracture properties of the alloys containing ${\gamma}$ particles.

키워드

과제정보

연구 과제 주관 기관 : 재료연구소

참고문헌

  1. K. Ullakko, J. K. Huang, C. Kantner, R. C. O'Handley, and V. V. Kokorin, Appl. Phys. Lett. 69, 1966 (1996) https://doi.org/10.1063/1.117637
  2. S. J. Murray, M. Marioni, S.M. Allen, R. C. O’Handley, and T. A. Lograsso, Appl. Phys. Lett. 77, 886 (2000) https://doi.org/10.1063/1.1306635
  3. T. Kakeshita, T. Takeuchi, T. Fukuda, T. Saburi, R. Oshima, S. Muto, and K. Kishio, Mater. Trans. JIM. 41, 882 (2000) https://doi.org/10.2320/matertrans1989.41.882
  4. R. D. James and M. Wuttig, Philos. Mag. A 77, 1273(1998) https://doi.org/10.1080/01418619808214252
  5. A. Sozinov, A. A. Likhachev, N. Lanska, and K. Ullako, Appl. Phys. Lett. 80, 1746 (2002) https://doi.org/10.1063/1.1458075
  6. L. Manosa, A. Planes, M. Acet, E. Duman, and E. F. Wassermann, J. Appl. Phys. 93, 8498 (2003) https://doi.org/10.1063/1.1555977
  7. Y. Sutou, Y. Imano, N. Koeda, T. Omori, K. Ishida, and K. Oikawa, Appl. Phys. Lett. 85, 4358 (2004) https://doi.org/10.1063/1.1808879
  8. Y. X. Li, H. Y. Liu, F. B. Meng, and L. Q. Yan, Appl. Phys. Lett. 84, 3594 (2002) https://doi.org/10.1063/1.1737481
  9. S. Chatrerjee, M. Thakur, S. Giri, S. Majumdar, A. K. Deb, and S. K. De, J. Alloy Comp. 456, 96 (2008) https://doi.org/10.1016/j.jallcom.2007.02.008
  10. S. N. Kaul, B. Annie D’Santhoshini, A. C. Abhyankar, and P. Henry, Appl. Phys. Lett. 89, 093119 (2006) https://doi.org/10.1063/1.2337271
  11. K. Oikawa, L.Wulff, T. Iijima, F. Gejima, T. Omori, A. Fujita, and K. Fukamichi, Appl. Phys. Lett. 79, 3290(2001) https://doi.org/10.1063/1.1418259
  12. J. Font, J. Muntasell, R. Santamarta, F. Masdeu, and J. Pons, Mater. Sci. Eng. A 438-440, 919 (2006) https://doi.org/10.1016/j.msea.2006.02.106
  13. R. Santamarta, J. Font, J. Muntasell, and F. Masdeu, Scripta Mater. 54, 1105 (2006) https://doi.org/10.1016/j.scriptamat.2005.11.062
  14. J. -M. Lee, Y. -M. Oh, K. Euh, and S. B. Kang, Metals and Materials Int. 15, 459 (2009) https://doi.org/10.1007/s12540-009-0459-z
  15. H. J. Yu, X. T. Zu, H. Fu, X. Y. Zhang, and Z. G. Wang, J. Alloy Comp. 470, 237 (2009) https://doi.org/10.1016/j.jallcom.2008.03.063
  16. K. Oikawa, T. Ota, T. Omori, H. Morito, A. Fujita, R. Kainuma, K. Fukamichi, and K. Ishida, Appl. Phys. Lett. 81, 5201 (2002) https://doi.org/10.1063/1.1532105
  17. Y. Q. Ma, L. H. Xu, Y. Li, C. B. Jiang, and H. B. Xu, Z. Metallkd. 96, 843 (2005) https://doi.org/10.3139/146.101110
  18. K. Euh, J.-M. Lee, and S. B. Kang, 2007 Fall Conference Abstracts, p.196, Korean Inst. Metals & Mater., Korea(2007)
  19. B. C. Kim, S. Lee, D. Y. Lee, and N. J. Kim, Metall. Mater. Trans. A 22A, 1889 (1991) https://doi.org/10.1007/BF02646515
  20. K. Lee, S.-B. Lee, S.-K. Lee, and S. Lee, J. Kor. Inst. Met. & Mater. 47, 542 (2009)
  21. Y.-H. Kim, D. Kwon, and S. Lee, Acta Metall. Mater. 42, 1887 (1994) https://doi.org/10.1016/0956-7151(94)90013-2
  22. J. M. McNaney, R. M. Cannon, and R. O. Ritchie, Acta Mater. 44, 4713 (1996) https://doi.org/10.1016/S1359-6454(96)00126-7
  23. P. D. Zavattieri and H. D. Espinosa, Acta Mater. 49, 4291(2001) https://doi.org/10.1016/S1359-6454(01)00292-0
  24. Y. Sutou, N. Kamiya, T. Omori, R. Kainuma, K. Ishida, and K. Oikawa, Appl. Phys. Lett. 84, 1275 (2004) https://doi.org/10.1063/1.1642277