• Title/Summary/Keyword: homogeneous function

Search Result 442, Processing Time 0.023 seconds

OPTIMUM ALLOCATION OF PORT LABOR GANGS IN CASE OF MULTIPLE SHIPS (항만하역노동력의 최적배분에 관한 연구 (II) 선박군의 경우)

  • 이철영;우병구
    • Journal of the Korean Institute of Navigation
    • /
    • v.13 no.3
    • /
    • pp.37-44
    • /
    • 1989
  • Recently recognize the labor productivity of port physical distribution system in the port and shipping areas, Much Efforts for evaluating this productivity has been made continuously. BUt still there is little study, so far, on a systematic research for the management of port labor gangs, and even those were mainly depended on a rule of thumb. Especially the object of this study is to introduce the method of optimal allocation and assignment for the labor gangs per pier unit in the multiple ships berthed at an arbitary pier or port. In case the multiple ships have a homogeneous cargoes or do not have sufficient labor gangs to be assigned. The problem of optimal allocation and assignment of the labor gangs to be i) formalized with multi-state decision process in form of difference equation as the pattern which converted the independent multiple ships into a single ship with the intra-multiple ships, and ii) the optimal size of labor gangs could be obtained through the simple mathematical method instead of complicated dynamic programming, and iii) In case of shortage of labor gangs available the evaluation function considering the labor gangs available and total shift times was introduced, and iv) the optimal allocation and assignment of labor gangs was dealt at the point of minimizing the summation of the total shift times and at the point of minimizing the total cost charged for the extra waiting time except PHI time during port times for the multiple ships combinations.

  • PDF

Axisymmetric large deflection analysis of fully and partially loaded shallow spherical shells

  • Altekin, Murat;Yukseler, Receb F.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.4
    • /
    • pp.559-573
    • /
    • 2013
  • Geometrically non-linear axisymmetric bending of a shallow spherical shell with a clamped or a simply supported edge under axisymmetric load was investigated numerically. The partial load was introduced by the Heaviside step function, and the solution was obtained by the finite difference and the Newton-Raphson methods. The thickness of the shell was considered to be uniform and the material was assumed to be homogeneous and isotropic. Sensitivity analysis was made for three geometrical parameters. The accuracy of the algorithm was checked by comparing the central deflection, the radial membrane stress at the edge, or the transverse shear force with the solutions of plates and shells in the literature and good agreement was obtained. The main findings of the study can be outlined as follows: (i) If the shell is fully loaded the central deflection of a clamped shell is larger than that of a simply supported shell provided that the shell is not very shallow, (ii) if the shell is partially loaded the central deflection of the shell is sensitive to the parameters of thickness, depth, and partial loading but the influence of the boundary conditions is negligible.

Cuboidal Infinite Elements for Soil-Structure-Interaction Analysis in Multi-Layered Half-Space (3차원 지반-구조물 상호작용해석을 위한 입방형 무한요소)

  • Seo, Choon-Gyo;Yun, Chung-Bang;Kim, Jae-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.39-50
    • /
    • 2007
  • This paper presents 3D infinite elements for the elastodynamic problem with multi-layered half-space. Five different types of infinite elements are formulated by using approximate expressions of multiple wave components for the wave function in multi-layered soil media. They are horizontal, horizontal-corner, vortical, vertical-corner and vertical-horizontal-comer infinite elements. The elements can effectively be used for simulating wane radiation problems with multiple wave components. Numerical example analyses are presented for rigid disk, square footings and embedded footing on homogeneous and layered half-space. The numerical results show the effectiveness of the proposed infinite elements.

Frequency-Dependent Line Capacitance and Conductance Calculations of On-Chip Interconnects on Silicon Substrate Using Fourier cosine Series Approach

  • Ymeri, H.;Nauwelaers, B.;Vandenberghe, S.;Maex, K.;De Roest, D.;Stucchi, M.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.4
    • /
    • pp.209-215
    • /
    • 2001
  • In this paper a method for analysis and modelling of coplanar transmission interconnect lines that are placed on top of silicon-silicon oxide substrates is presented. The potential function is expressed by series expansions in terms of solutions of the Laplace equation for each homogeneous region of layered structure. The expansion coefficients of different series are related to each other and to potentials applied to the conductors via boundary conditions. In the plane of conductors, boundary conditions are satisfied at $N_d$ discrete points with $N_d$ being equal to the number of terms in the series expansions. The resulting system of inhomogeneous linear equations is solved by matrix inversion. No iterations are required. A discussion of the calculated line admittance parameters as functions of width of conductors, thickness of the layers, and frequency is given. The interconnect capacitance and conductance per unit length results are given and compared with those obtained using full wave solutions, and good agreement have been obtained in all the cases treated

  • PDF

A study on the Array of Circular Loop Antenna in Moving Media (차동기질내에서 위형 루우프 안테나의 배열에 관한 연구)

  • 최병하
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.11 no.6
    • /
    • pp.33-37
    • /
    • 1974
  • In this paper, the radiation characteristics for the array of a circular loop antenna is studied in moving media. The medium is assumed to be homogeneous, isotropic, and to move with a constant velocity much less than the speed of light. The integral equation for the current distribution is derived and the current functions is found by means of courier Series as a solution of the integral equation. The electric field is derived from the current on circular loop antenna and the Dyadic Green's Function in moving media. The numerical calculation of the electric field concerning to the two element antenna array,, in which one element is parasitic, is carried out. The field patterns are plotted from the computed values. As a result, the field patterns in moving media, compared with the patterns in stationary media, are found to decrease in the direction of media velocity and increase in the opposite direction, and the maximum directivity is shifted.

  • PDF

The Comparative Study of Software Optimal Release Time Based on Extreme Distribution Property (극값분포 특성에 근거한 소프트웨어 최적 방출시기에 관한 비교)

  • Kim, Hee-Cheul
    • Journal of IKEEE
    • /
    • v.15 no.1
    • /
    • pp.43-48
    • /
    • 2011
  • Decision problem called an optimal release policies, after testing a software system in development phase and transfer it to the user, is studied. The infinite failure non-homogeneous Poisson process models presented and propose an optimal release policies of the life distribution applied extreme distribution which used to find the minimum (or the maximum) of a number of samples of various distributions. In this paper, discuss optimal software release policies which minimize a total average software cost of development and maintenance under the constraint of satisfying a software reliability requirement. In a numerical example, extreme value distribution as another alternative of existing the Poisson execution time model and the log power model can be verified using inter-failure time data.

Effects of elastic strain on the agglomeration of silicide films for electrical contacts in integrated circuit applications

  • Choy, J.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.3
    • /
    • pp.95-100
    • /
    • 2004
  • This paper reports a potential problem in the electrical performance of the silicide film to silicon contacts with respect to the scaling trend in integrated circuit (IC) devices. The effects of elastic strain on the agglomeration of the coherent silicide film embedded in an infinite matrix are studied employing continuum linear elasticity and finite-difference numerical method. The interface atomic diffusion is taken to be the dominant transport mechanism where both capillarity and elastic strain are considered for the driving forces. Under plane strain condition with elastically homogeneous and anisotropic system with cubic symmetry, the dilatational misfit and the tetragonal misfit in the direction parallel to the film thickness are considered. The numerical results on the shape evolution agree with the known trend that the equilibrium aspect ratio of the film increases with the elastic strain intensity. When the elastic strain intensity is taken to be only a function of the film size, the flat film morphology with a large aspect ratio becomes increasingly unstable since the equilibrium aspect ratio decreases, as the film scales. The shape evolution results in a large decrease in contact to silicon area, and may deteriorate the electrical performances.

Analysis of dynamic performance of redundant manipulators using the concept of aspects

  • Chung, W.J.;Chung, W.K.;Youm, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1664-1670
    • /
    • 1991
  • For kinematically redundant manipulators, conventional dynamic control methods of local torque optimization showed the instability which resulted in physically unachievable torque requirements. In order to guarantee stability of the null space vector method which resolves redundancy at the acceleration level, Maciejewski[1] analyzed the kinetic behavior of homogeneous solution component and proposed the condition to identify regions of stability and instability for this method. 'In this paper, a modified null space vector method is first presented based on the Maciejewski's condition which is a function of a manipulator's configuration. Secondly, a new control method which is based on the concept of aspects is proposed. It was shown by computer simulations that the modified null space vector method and the proposed method have a common property that a preferred aspect is preserved during the execution of a task. It was also illustrated that both methods demonstrate a drastic reduction of torque loadings at the joints in the tracking motion of a long trajectory when compared with the null space vector method, and thus guarantee the stability of joint torque.

  • PDF

A study of flow oscillations in a upright heated pipe (직립전열관에서의 유체진동에 관한 연구)

  • 박진길;진강규;오세준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.85-99
    • /
    • 1984
  • The stability of the two-phase flow in a heated channel is of great importance in the design and operation of the boilers and light water nuclear reactors, because it can cause flow oscillations and lead to a violation of thermal limits with resultant overheating of the channels and cladding. This paper presents a systematic evaluation to the variation effects of the basic four (4) dimensionless parameters in a homogeneous equilibrium model. The flow stability is examined on the ground of static characteristic curves. The complicated transfer function of flow dynamics which gives consideration to the transport lag of density wave is derived, and the transient flow stability is analysed by applying the Nyquist stability criterion in control engineering. The analysis results summed up as follows 1. The coolant flow becomes stable in large friction number and specific flow, while it is unstabale in small friction number and flow. 2. Large phase-change number and Froude number destabilize the two-phase flow, but small numbers stabilize it. The effect to variation of phase-change number is more dominant compared with Froude number. 3. The dynamic analysis is required to hold the sufficient safety of heated channels since only static results does not keep it. The special attention could be payed in the design and operation of heat engines, because the unstaable region exists within the stable boundary at small and middle phase-change number and Froude number.

  • PDF

High Temperature Electrical Conductivity of Perovskite La0.98Sr0.02MnO3 (페로프스카이트 $La_{0.98}Sr_{0.02}MnO_3$의 고온전기특성)

  • 김명철;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.11
    • /
    • pp.900-904
    • /
    • 1992
  • High temperature electrical conductivity was measured for perovskite La0.98Sr0.02MnO3 at 200~130$0^{\circ}C$ as a function of Po2 and 1/T. Perovskite La1-xSrxMnO3 system is the typical oxygen electrode in solid oxide fuel cell (SOFC). Acetate precursors were used for the preparation of mixed water solution and the calcined powders were reacted with Na2CO3 flux in order to obtain highly reactive powders of perovskite La0.98Sr0.02MnO3. The relative density was greatly increased above 90% because of the homogeneous sintering. From the conductivity ($\sigma$)-temperature and conductivity-Po2 at constant temperature, the defect structure of La0.98Sr0.02MnO3 was discussed. From the slope of 1n($\sigma$) vs 1/T, the activation energy of 0.069 and 0.108eV were evaluated for above 40$0^{\circ}C$, respectively. From the relationship between $\sigma$ and Po2, it was found that the decomposition of La0.98Sr0.02MnO3 was occurred at 10-15.5 atm(97$0^{\circ}C$) and 10-11 atm(125$0^{\circ}C$). It is supposed that the improvement of p-type conductivity may be leaded by the increase of Mn4+ concentration through the substitution of divalent/monovalent cations for La site in LaMnO3.

  • PDF