• Title/Summary/Keyword: homo-buffer layer

Search Result 8, Processing Time 0.02 seconds

Analysis of Photoluminescence for N-doped and undoped p-type ZnO Thin Films Fabricated by RF Magnetron Sputtering Method

  • Liu, Yan-Yan;Jin, Hu-Jie;Park, Choon-Bae;Hoang, Geun C.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.24-27
    • /
    • 2009
  • N-doped ZnO thin films were deposited on n-type Si(100) and homo-buffer layer, and undoped ZnO thin film was also deposited on homo-buffer layer by RF magnetron sputtering method. After deposition, all films were in-situ annealed at $800^{\circ}C$ for 5 minutes in ambient of $O_2$ with pressure of 10Torr. X -ray diffraction shows that the homo-buffer layer is beneficial to the crystalline of N-doped ZnO thin films and all films have preferable c-axis orientation. Atomic force microscopy shows that undoped ZnO thin film grown on homo-buffer layer has an evident improvement of smoothness compared with N-dope ZnO thin films. Hall-effect measurements show that all ZnO films annealed at $800^{\circ}C$ possess p-type conductivities. The undoped ZnO film has the highest carrier concentration of $1.145{\times}10^{17}cm{-3}$. The photoluminescence spectra show the emissions related to FE, DAP and many defects such as $V_{Zn}$, $Zn_O$, $O_i$ and $O_{Zn}$. The p-type defects ($O_i$, $V_{Zn}$, and $O_{Zn}$) are dominant. The undoped ZnO thin film has a better p-type conductivity compared with N-doped ZnO thin film.

A study on $CeO_2$ buffer layer on biaxially textured Ni-3%W substrate deposited by electron beam evaporation with high deposition rate (전자빔 증착법으로 이축배향된 Ni-3%W 기판 위에 높은 증착률로 제조된 $CeO_2$ 완충층에 대한 연구)

  • Kim, H.J.;Lee, J.B.;Kim, B.J.;Hong, S.K.;Lee, H.J.;Kwon, B.G.;Lee, H.G.;Hong, G.W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • [ $CeO_2$ ]has been widely used for single buffer layer of coated conductor because of superior chemical and structural compatibility with $ReBa_2Cu_3O_{7-{\delta}}$(Re=Y, Nd, Sm, Gd, Dy, Ho, etc.). But, the surface of $CeO_2$ layer showed cracks because of the large difference in thermal expansion coefficient between metal substrate and deposited $CeO_2$ layer, when thickness of $CeO_2$ layer exceeds 100 nm on the biaxially textured Ni-3%W substrate. The deposition rate has been limited to be less than 6 $\AA$/sec in order to get a good epitaxy. In this research, we deposited $CeO_2$ single buffer layers on biaxially textured Ni-3%W substrate with 2-step process such as thin nucleation layer(>10 nm) with low deposition rate(3 $\AA$/sec) and thick homo epitaxial layer(>240 nm) with high deposition rate(30 $\AA$/sec). Effect of deposition temperature on degree of texture development was tested. Thick homo epitaxial $CeO_2$ layer with good texture without crack was obtained at $600^{\circ}C$, which has ${\Delta}{\phi}$ value of $6.2^{\circ}$, ${\Delta}{\omega}$ value of $4.3^{\circ}$ and average surface roughness(Ra) of 7.2 nm within $10{\mu}m{\times}10{\mu}m$ area. This result shows the possibility of preparing advanced Ni substrate with simplified architecture of single $CeO_2$ layer for low cost coated conductor.

Optical Analysis of p-Type ZnO:Al Thin Films

  • Jin, Hu-Jie;So, Byung-Moon;Park, Bok-Kee;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.68-69
    • /
    • 2007
  • We have prepared p-type ZnO:Al films in pure oxygen ambient on n-type Si (100) and homo buffer layers by RF magnetron sputtering system. Hall effect measurement shows that the film annealed at $600^{\circ}C$ possesses p-type conductivity and the film annealed $800^{\circ}C$ does not. PL spectra show different properties of p- and n-type ZnO film. The corresponding peaks of PL spectra of p- and n-type show at about same positions. The intensities of high photon energy of n-type film on buffer shows decreasing tendency.

  • PDF

Optimization of the deposition condition on hetero-epitaxial As-doped ZnO thin films by pulsed laser deposition (PLD를 이용한 hetero-epitaxial As-doped ZnO 박막 증착 조건의 최적화)

  • Lee, Hong-Chan;Jung, Youn-Sik;Choi, Won-Kook;Park, Hun;Shim, Kwang-Bo;Oh, Young-Jei
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.207-210
    • /
    • 2005
  • In order to investigate the influence of the homo buffer layer on the microstructure of the ZnO thin film, undoped ZnO buffer layer were deposited on sapphire (0001) substrates by ultra high vaccum pulsed laser deposition (UHV-PLD) and molecular beam eiptaxy (MBE). After high temperature annealing at $600^{\circ}C$ for 30min, undoped ZnO buffer layer was deposited with various oxygen pressure (35~350mtorr). On the grown layer of undoped ZnO, Arsenic-doped(l, 3wt%) ZnO layers were deposited by UHV-PLD. The optical property of the ZnO was analyzed by the photoluminescence (PL) measurement. From $\Theta-2\Theta$ XRD analysis, all the films showed strong (0002) diffraction peak, and this indicates that the grains grew uniformly with the c-axis perpendicular to the substrate surface. Field emission scanning electron microscope (FE-SEM) revealed that microstructures of the ZnO were varied with oxygen pressure, arsenic doping level, and the deposition method of undoped ZnO buffer layers. The films became denser and smoother in the cases of introducing MBE-buffer layer and lower oxygen pressure during As-doped ZnO deposition. Higher As-doping concentration enhanced the columnar-character of the films.

  • PDF

Organic Thin-Film Transistors with Polymer Buffer Layer (고분자 완충층을 이용한 유기박막트랜지스터)

  • Choi, Hak-Bum;Hyung, Gun-Woo;Park, Il-Houng;Hwang, Seon-Wook;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.182-183
    • /
    • 2008
  • We fabricated a pentacene thin film transistor with Poly-vinylalcohol (PVA) as a dielectric. And we used Poly(9-vinylcarbazole) (PVK) as a buffer layer to improve the electrical characteristics. PVK is a material used often host material for OLED device, as it has good film forming properties, large HOMO-LUMO(highest occupied molecular orbital-lowest unoccupied molecular orbital) bandgap. The performance of a OTFT device with PVA gate dielectric was improved by using the PVK. Field effect mobility, threshold voltage, and on-off current ratio of device with PVK layer were about 0.6 $cm^2$/Vs, -17V, and $5\times10^5$, respectively.

  • PDF

Realization of p-type ZnO Thin Films Using Codoping N and Al by RF Magnetron Sputtering

  • Jin, Hu-Jie;So, Byung-Moon;Park, Bok-Kee;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.107-108
    • /
    • 2006
  • ZnO is a promising material for UV or blue LEDs p-Type ZnO thin films which are imperative for the p-n junction of LEDs are difficult to achieve because of strong compensation of intrinsic defects such as zinc interstitial and oxygen vacancy. The method of codoping group three elements and group five elements is effective for the realization of p-type ZnO films. In this study, We codoped N and Al m ZnO thin films by RF magnetron sputtering and annealed the films in sputtering chamber. Some films showed p-type conductivity m Seeback effect measurement.

  • PDF

Implementation of High Carrier Mobility in Al-N Codoped p-Type ZnO Thin Films Fabricated by Direct Current Magnetron Sputtering with ZnO:Al2O3 Ceramic Target

  • Jin, Hujie;Xu, Bing;Park, Choon-Bae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.4
    • /
    • pp.169-173
    • /
    • 2011
  • In this study, Al-N codoped p-type zinc oxide (ZnO) thin films were deposited on Si and homo-buffer layer templates in a mixture of $N_2$ and $O_2$ gas with ceramic ZnO:(2 wt% $Al_2O_3$) as a sputtering target using DC- magnetron sputtering. X-ray diffraction spectra of two-theta diffraction showed that all films have a predominant (002) peak of ZnO Wurtzite structure. As the $N_2$ fraction in the mixed $N_2$ and $O_2$ gases increased, field emission secondary electron microscopy revealed that the surface appearance of codoped films on Si varied from smooth to textured structure. The p-type ZnO thin films showed carrier concentration in the range of $1.5{\times}10^{15}-2.93{\times}10^{17}\;cm^{-3}$, resistivity in the range of 131.2-2.864 ${\Omega}cm$, and mobility in the range of $3.99-31.6\;cm^2V^{-1}s^{-1}$ respectively.