• Title/Summary/Keyword: homo polymer

Search Result 73, Processing Time 0.024 seconds

Synthesis and Characterization of Very High Molecular Weight Nylon 4 and Nylon 4/6 Copolymers (매우 높은 분자량을 갖는 Nylon 4 및 Nylon 4/6 공중합체의 합성 및 그 특성 분석)

  • Kim, Nam Cheol;Kim, Ji-Heung;Nam, Sung Woo;Jeon, Boong Soo;Yoo, Young-Tai;Kim, Young Jun
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.211-217
    • /
    • 2013
  • Potassium tert-butoxide (t-BuOK) with $CO_2$ or benzoyl chloride (BzC) as a polymerization initiator system was used with crown ether or TMAC as catalyst to synthesize very high molecular weight nylon 4 homo- and copolymers by anionic ring opening polymerization. Effect of different amounts of catalyst, crown ether and TMAC on the polymerization was studied in terms of intrinsic viscosity, yield and thermal properties. By adding crown ether or TMAC, polymers with very higher intrinsic viscosity values were obtained in a high yield. It was possible to synthesize nylon 4 homopolymer with such a high intrinsic viscosity value of 6.36 dL/g. Crown ether was found to be more efficient in terms of intrinsic viscosity and polymer yields than TMAC. Thermal analysis confirmed that molecular weight effect on the thermal properties of both nylon 4 and nylon 4 copolymer was marginal.

Electronic Properties and Conformation Analysis of π-Conjugated Distyryl Benzene Derivaties

  • Kim, Cheol-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.330-336
    • /
    • 2002
  • A quantum-chemical investigation on the conformations and electronic properties of bis[2-{2-methoxy-4,6-di(t-butyl)phenyl}ethenyl]benzenes (MBPBs) as building block for ${\pi}$-conjugate polymer are performed in order to display the effects of t-butyl and methoxy group substitution and of kink(ortho and meta) linkage. The conjugation length of the polymers can be controlled by substituents and kink linkages of backbone. Structures for the molecules, o-, m-, and p-MBPBs as well as unsubstituted o-, m-, and p-DSBs were fully optimized by using semiempirical AM1, PM3 methods, and ab initio HF method with 3-21G(d) basis set. The potential energy curves with respect to the change of single torsion angle are obtained by using semiempirical methods and ab initio HF/3-21G(d) basis set. The curves are similar shape in the molecules with respect to the position of vinylene groups. It is shown that the conformations of the molecules are compromised between the steric repulsion interaction and the degree of the conjugation. Electronic properties of the molecules were obtained by applying the optimized structures and geometries to the ZINDO/S method. ZINDO/S analysis performed on the geometries obtained by AM1 method and HF/3-21G(d) level is reported. The absorption wavelength on the geometries obtained by AM1 method is much longer than that by HF/3-21G(d) level. The absorption wavelength of MBPBs are red shifted with comparison to that of corresponding DSBs in the same torsion angle because of electron donating substituents. The absorption wavelength of isomers with kink(orth and meta) linkage is shorter than that of para linkage.

Influence of the Insulating Properties on Charge Injection Phenomena of Biaxially-Drawn Polypropylene Film (이축 연신된 폴리프로필렌 필름의 전하주입 현상이 절연특성에 미치는 영향)

  • 이준웅;김병태;박승협
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.1 no.2
    • /
    • pp.74-81
    • /
    • 1987
  • The reduction in dielectric strength of insulating polymer material when applying electric field is known to be substantial due to the trapped carrier effect. In this study, the carrier property of Biaxially-Drawn polypropylene, which has superior heat-resistance compared to ordinary one, is examined to improve electrical characteristics by measuring TSC spectra as a function of electric field applied to a sample of ($50{\mu}m$) thickness film. The TSC spectra in the temperature range of 303-413(K) and electric field of 2-80(MV/m) have shown no observable effect below 12(MV 1m) but TSC currents of Hetero-and Homo-peaks formed from trapped space charger and space charger injected from electrode have been observed above that point, which seems eventually lead to dielectric breakdown. Finally, this study has shown the superior dielectric proporty of Biaxially-Drawn polypropylene film compared to the non-oriented one for electrical insulation.

  • PDF

Study of Energy Level Alignment at the Interface of P3HT and PCBM Bilayer Deposited by Electrospray Vacuum Deposition

  • Kim, Ji-Hoon;Hong, Jong-Am;Seo, Jae-Won;Kwon, Dae-Gyoen;Park, Yong-Sup
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.134-134
    • /
    • 2012
  • We investigated the interface of poly (3-hexylthiophene) (P3HT) and C61-butyric acid methylester (PCBM) by using photoelectron spectroscopy (PES). These are the most widely used materials for bulk heterojunction (BHJ) organic solar cells due to their high efficiency. Study of the BHJ interfaces is difficult because the organic films are typically prepared by spin coating in ambient conditions. This is incompatible with the interface electronic structure probes such as PES, which requires ultrahigh vacuum conditions. Study of interface requires gradual deposition of thin films that is also incompatible with the spin coating process. In this work, we used electrospray vacuum deposition (EVD) technique to deposit P3HT and PCBM in high vacuum conditions. EVD allows us to form polymer thin films onto ITO substrate in a step-wise manner directly from solutions and to use PES without exposing the sample to the ambient condition. Although the morphology of the EVD deposited P3HT films observed by optical and atomic force microscopes is quite different from that of the spin coated ones, the valence region spectra were similar. PCBM was deposited on the P3HT film in a similar manner and the energy level alignment between these two materials was studied. We discuss the relation between Voc of P3HT:PCBM solar cell and HOMO-LUMO energy offset obtained in this study.

  • PDF

Novel 4,7-Dithien-2-yl-2,1,3-benzothiadiazole-based Conjugated Copolymers with Cyano Group in Vinylene Unit for Photovoltaic Applications

  • Kim, Jin-Woo;Heo, Mi-Hee;Jin, Young-Eup;Kim, Jae-Hong;Shim, Joo-Young;Song, Su-Hee;Kim, Il;Kim, Jin-Young;Suh, Hong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.629-635
    • /
    • 2012
  • Two novel conjugated copolymers utilizing 4,7-dithien-2-yl-2,1,3-benzothiadiazole (DTBT) coupled with cyano (-CN) substituted vinylene, as the electron deficient moeity, have been synthesized and evaluated in bulk heterojunction solar cell. The electron deficient moeity was coupled with carbazole and fluorene unit by Knoevenagel condition to provide poly(bis-2,7-((Z)-1-cyano-2-(5-(7-(2-thienyl)-2,1,3-benzothiadiazol-4-yl)-2-thienyl)ethenyl)-alt-9-(1-octylnonyl)-9H-carbazol-2-yl-2-butenenitrile) (PCVCNDTBT) and poly(bis-2,7-((Z)-1-cyano-2-(5-(7-(2-thienyl)-2,1,3-benzothiadiazol-4-yl)-2-thienyl)ethenyl)-alt-9,9-dihexyl-9H-fluoren-2-yl) (PFVCNDTBT). The optical band gaps of PCVCNDTBT (1.74 eV) and PFVCNDTBT (1.80 eV) are lower than those of PCDTBT (1.88 eV) and PFVDTBT (2.13 eV), which is advantageous to provide better coverage of the solar spectrum in the longer wavelength region. The high $V_{oc}$ value of the PSC of PCVCNDTBT (~0.91 V) is attributed to its lower HOMO energy level ( 5.6 eV) as compared to PCDTBT ( 5.5 eV). Bulk heterojunction solar cells based on the blends of the polymers with [6,6]phenyl-$C_{61}$-butyric acid methyl ester ($PC_{61}BM$) gave power conversion efficiencies of 0.76% for PCVCNDTBT under AM 1.5, 100 mW/$cm^2$.

Poly(p-phenylenevinylene)s Derivatives Containing a New Electron-Withdrawing CF3F4Phenyl Group for LEDs

  • Jin, Young-Eup;Kang, Jeung-Hee;Song, Su-Hee;Park, Sung-Heum;Moon, Ji-Hyun;Woo, Han-Young;Lee, Kwang-Hee;Suh, Hong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.139-147
    • /
    • 2008
  • New PPV derivatives which contain electron-withdrawing CF3F4phenyl group, poly[2-(2-ethylhexyloxy)-5-(2,3,5,6-tetrafluoro-4-trifluoromethylphenyl)-1,4-phenylenevinylene] (CF3F4P-PPV), and poly[2-(4-(2-etylhexyloxy)-phenyl)-5-(2,3,5,6-tetrafluoro-4-trifluoromethylphenyl)-1,4-phenylenevinylene] (P-CF3F4P-PPV), have been synthesized by GILCH polymerization. As the result of the introduction of the electron-withdrawing CF3F4phenyl group to the phenyl backbone, the LUMO and HOMO energy levels of CF3F4P-PPV (3.14, 5.50 eV) and P-CF3F4P-PPV (3.07, 5.60 eV) were reduced. The PL emission spectra in solid thin film are more red-shifted over 50 nm and increased fwhm (full width at half maximum) than solution conditions by raising aggregation among polymer backbone due to electron withdrawing effect of 2,3,5,6-tetrafluoro-4-trifluoromethylphenyl group. The EL emission maxima of CF3F4P-PPV and P-CF3F4P-PPV appear at around 530-543 nm. The current density-voltage-luminescence (J-V-L) characteristics of ITO/PEDOT/polymer/Al devices of CF3F4P-PPV and P-CF3F4P-PPV show that turn-on voltages are around 12.5 and 7.0 V, and the maximum brightness are about 82 and 598 cd/m2, respectively. The maximum EL efficiency of P-CF3F4P-PPV (0.51 cd/A) was higher than that of CF3F4P-PPV (0.025 cd/A).

Effect of Carboxylic Acid Group of Functionalized Carbon Nanotubes on Properties of Electrospun Polyacrylonitrile (PAN) Fibers (기능화된 탄소나노튜브의 카르복실산이 전기방사된 폴리아크릴로니트릴 섬유의 물성에 미치는 영향)

  • Park, Ok-Kyung;Kim, Ju-Hyung;Lee, Sung-Ho;Lee, Joong-Hee;Chung, Yong-Sik;Kim, Jun-Kyung;Ku, Bon-Cheol
    • Polymer(Korea)
    • /
    • v.35 no.5
    • /
    • pp.472-477
    • /
    • 2011
  • To study the effects of the acid group of functionalized MWNT (multiwalled carbon nanotube) on the thermal and mechanical properties of polyacrylonitrile(PAN) nanofibers, acid ($H_2SO_4/HNO_3$) treated MWNT (O-MWNT) were further functionalized by diazonium salt reaction with 5-aminoisophthalic acid (IPA). Compared to O-MWNT, IPA-MWNT with isophthalic acid group showed a better dispersion stability in polar solvents and IPA-MWNT/PAN composite film displayed lower heat of reaction (${\Delta}H$) than that of homo PAN when stabilized under air atmosphere. The continuous electrospun fibers were prepared using a conductive water bath. PAN fibers containing 1 wt% of IPA-MWNT showed an increase of tensile strength by 100% and tensile modulus by 240% compared to the PAN fibers without IPA-MWNT.

D-$\Pi$-A designed dye chromophores and nanoparticles: optical properties, chemosensor effects and PE/Aramid fiber colorations

  • Son, Young-A;Kim, Su-Ho;Kim, Young-Sung
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2010.03a
    • /
    • pp.40-40
    • /
    • 2010
  • Studies on attractive color changing property of dye chromophore and fluorophore have been greatly enjoyed in the related industrial and research fields such as optoelectronics, chemosensor, biosensor and so on. The optical property based on D-$\Pi$-A intramolecular charge transfer (ICT) system of chromophore molecules can be utilized as suitable sensing probes for checking media polarity and determining colorimetric chemosensing effect, especially heavy metal detection. These finding are obtained by absorption and emission properties. In this work, donor-acceptor D-$\Pi$-A type fluorescent dyes were designed and synthesized with the corresponding donor and acceptor groups. The selected donor moieties might be provided prominent amorphous properties which are very useful in designing and synthesizing functional polymers and in fabricating devices. Another reasons to choose are commercial availabilities in high purity and low price. Donor-bridge-acceptor (D-A) type dyes can produce impressive optical-physical properties, yielding them potentially suitable for applications in the synthesis of small functional organic molecules. Small organic functional molecules have unique advantages, such as better solubility, amorphous character, and represent an area of research which needs to be explored and developed. Currently, their applications in metalorganic compounds is rapidly expanding and becoming widespread in self-assembly processes, photoluminescence applications, chiral organocatalysts, and ingrafts with nanomaterials. Colloidal nanoparticles have received great attentions in recent years. The photophysical properties of nanoparticles, particularly in terms of brightness, photostability, emission color purity and broad adsorption range, are very attractive functions in many applications. To our knowledge background, colloidal nanoparticles have been enjoyed their applications in bio-probe research fields. This research interest can be raised by the advantages of the materials such as high photoluminescence quantum yields, sharp emission band, long-term photostability and broad excitation spectra. In recent, the uses of nanoparticles being embedded in a polymer matrix and binded on polymer surface have been explored and their properties such as photo-activation and strong photoluminescence have been proposed. The prepared chromophores and nanoparticles were investigated with absorption and emission properties, solvatochromic behaviors, pH induced color switching effects, chemosensing effects and HOMO/LUMO energy potentials with computer simulation. In addition, synthesized fluorophore dyes and particles were applied onto PE/Aramid fiber fluorescing colorations. And the related details were then discussed.

  • PDF

Isolation and Characterization of Exopolysaccharide Producing Lactic Acid Bacteria from Korean Soy Sauce and Soybean Paste (전통 장류로부터 Exopolysaccharide 생성 유산균의 분리 및 특성)

  • Yun, Hye Ju;Lee, You Jung;Yeo, Soo-Hwan;Park, Hye Young;Park, Heui-Dong;Baek, Seong Yeol
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.2
    • /
    • pp.190-197
    • /
    • 2013
  • Three slime-forming lactic acid bacteria were isolated from traditional Korean fermented soy sauce and soybean paste and shown to produce exopolysaccharides (EPS) in sucrose media. By isolating the strains, examining their morphological characteristics and determining their 16S rDNA sequences, N58-5 and K6-7 were identified as Leuconostoc mesenteroides and N45- 10 as Leuconostoc citreum. The acid and bile tolerances of these three strains were investigated. Amongst the three lactic acid bacteria, Leuc. citreum N45-10 exhibited the highest viability ($10^5-10^6$ CFU/ml) in 0.05 M sodium phosphate buffer (pH 0.3) for 2 h, in artificial gastric juice for 2 h and in 0.3%, 0.5% oxgall for 24h. Leuc. mesenteroides K6-7, N58-5 and Leuc. citreum N45- 10 were grown in sucrose liquid medium and 8.16 g/L, 3.65 g/L, 16.17 g/L of EPS was collected, respectively. The hydrolyzed EPS was analyzed by HPLC in order to determine the sugar composition of EPS. Leuc. mesenteroides K6-7 and N58-5 showed two peaks indicating glucose and fructose, thus they were determined to be hetero-type polysaccharides. Leuc. citreum N45-10 showed only the glucose polymer, indicating it to be a homo-type polysaccharide. In addition, all three lactic acid bacterial hemolysis did not demonstrate a clear zone in blood agar in the area surrounding a lactic acid bacteria colony.

Synthesis and Characterization of Quinoxaline-Based Thiophene Copolymers as Photoactive Layers in Organic Photovoltaic Cells

  • Choi, Yoon-Suk;Lee, Woo-Hyung;Kim, Jae-Ryoung;Lee, Sang-Kyu;Shin, Won-Suk;Moon, Sang-Jin;Park, Jong-Wook;Kang, In-Nam
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.417-423
    • /
    • 2011
  • A series of new quinoxaline-based thiophene copolymers (PQx2T, PQx4T, and PQx6T) was synthesized via Yamamoto and Stille coupling reactions. The $M_ws$ of PQx2T, PQx4T, and PQx6T were found to be 20,000, 12,000, and 29,000, with polydispersity indices of 2.0, 1.2, and 1.1, respectively. The UV-visible absorption spectra of the polymers showed two distinct absorption peaks in the ranges 350 - 460 nm and 560 - 600 nm, which arose from the ${\pi}-{\pi}^*$ transition of oligothiophene units and intramolecular charge transfer (ICT) between a quinoxaline acceptor and thiophene donor. The HOMO levels of the polymer ranged from -5.37 to -5.17 eV and the LUMO levels ranged from -3.67 to -3.45 eV. The electrochemical bandgaps of PQx2T, PQx4T, and PQx6T were 1.70, 1.71, and 1.72 eV, respectively, thus yielding low bandgap behavior. PQx2T, PQx4T, and PQx6T had open circuit voltages of 0.58, 0.42, and 0.47 V, and short circuit current densities of 2.9, 5.29 and 9.05 mA/$cm^2$, respectively, when $PC_{71}BM$ was used as an acceptor. For the solar cells with PQx2T-PQx6T:$PC_{71}BM$ (1:3) blends, an increase in performance was observed in going from PQx2T to PQx6T. The power conversion efficiencies of PQx2T, PQx4T, and PQx6T devices were found to be 0.69%, 0.73%, and 1.80% under AM 1.5 G (100 mW/$cm^2$) illumination.