DOI QR코드

DOI QR Code

Synthesis and Characterization of Quinoxaline-Based Thiophene Copolymers as Photoactive Layers in Organic Photovoltaic Cells

  • Choi, Yoon-Suk (Department of Chemistry, The Catholic University of Korea) ;
  • Lee, Woo-Hyung (Department of Chemistry, The Catholic University of Korea) ;
  • Kim, Jae-Ryoung (Energy Materials Research Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Sang-Kyu (Energy Materials Research Division, Korea Research Institute of Chemical Technology) ;
  • Shin, Won-Suk (Energy Materials Research Division, Korea Research Institute of Chemical Technology) ;
  • Moon, Sang-Jin (Energy Materials Research Division, Korea Research Institute of Chemical Technology) ;
  • Park, Jong-Wook (Department of Chemistry, The Catholic University of Korea) ;
  • Kang, In-Nam (Department of Chemistry, The Catholic University of Korea)
  • Received : 2010.10.05
  • Accepted : 2010.11.23
  • Published : 2011.02.20

Abstract

A series of new quinoxaline-based thiophene copolymers (PQx2T, PQx4T, and PQx6T) was synthesized via Yamamoto and Stille coupling reactions. The $M_ws$ of PQx2T, PQx4T, and PQx6T were found to be 20,000, 12,000, and 29,000, with polydispersity indices of 2.0, 1.2, and 1.1, respectively. The UV-visible absorption spectra of the polymers showed two distinct absorption peaks in the ranges 350 - 460 nm and 560 - 600 nm, which arose from the ${\pi}-{\pi}^*$ transition of oligothiophene units and intramolecular charge transfer (ICT) between a quinoxaline acceptor and thiophene donor. The HOMO levels of the polymer ranged from -5.37 to -5.17 eV and the LUMO levels ranged from -3.67 to -3.45 eV. The electrochemical bandgaps of PQx2T, PQx4T, and PQx6T were 1.70, 1.71, and 1.72 eV, respectively, thus yielding low bandgap behavior. PQx2T, PQx4T, and PQx6T had open circuit voltages of 0.58, 0.42, and 0.47 V, and short circuit current densities of 2.9, 5.29 and 9.05 mA/$cm^2$, respectively, when $PC_{71}BM$ was used as an acceptor. For the solar cells with PQx2T-PQx6T:$PC_{71}BM$ (1:3) blends, an increase in performance was observed in going from PQx2T to PQx6T. The power conversion efficiencies of PQx2T, PQx4T, and PQx6T devices were found to be 0.69%, 0.73%, and 1.80% under AM 1.5 G (100 mW/$cm^2$) illumination.

Keywords

References

  1. Babel, A.; Jenekhe, S. A. Macromolecules 2003, 36, 7759. https://doi.org/10.1021/ma034717t
  2. Yoon, H.-S.; Lee, W.; Lee, J.-H.; Lim, D.-G.; Hwang, D-H.; Kang, I.-N. Bull. Korean Chem. Soc. 2009, 30, 2371. https://doi.org/10.5012/bkcs.2009.30.10.2371
  3. Lee, W. H.; Kong, H.; Oh, S. Y.; Shim, H. K.; Kang, I. N. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 111. https://doi.org/10.1002/pola.23126
  4. Qin, Y.; Kim, J. Y.; Frisbie, C. D.; Hillmyer, M. A. Macromolecules 2008, 41, 5563. https://doi.org/10.1021/ma8011575
  5. Thompson, B. C.; Kim, B. J.; Kavulak, D. F.; Sivula, K.; Mauldin, C.; Fréchet J. M. J. Macromolecules 2007, 40, 7425. https://doi.org/10.1021/ma071649s
  6. Kim, Y.; Cook, S.; Tuladhar, S. M.; Choulis, S. A.; Nelson, J.; Durrant, J. R.; Bradley, D. D. C.; Giles, M.; McCulloch, I.; Ha, C.-S.; Ree, M. Nat. Mater. 2006, 5, 197. https://doi.org/10.1038/nmat1574
  7. Son, S. K.; Choi, Y. S.; Lee, W. H.; Hong, T.; Kim, J. R.; Shin, W. S.; Moon, S. J.; Hwang, D. H.; Kang, I. N. J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 635. https://doi.org/10.1002/pola.23814
  8. Chen, H. Y.; Hou, J. H.; Zhang, S. Q.; Liang, Y. Y.; Yang, G. W.; Yang, Y.; Yu, L. P.; Wu, Y.; Li, G. Nat. Photon 2009, 3, 649. https://doi.org/10.1038/nphoton.2009.192
  9. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789. https://doi.org/10.1126/science.270.5243.1789
  10. Chen, J. W.; Cao, Y. Acc. Chem. Res. 2009, 42, 1709. https://doi.org/10.1021/ar900061z
  11. Li, Y. F.; Zou, Y. P. Adv. Mater. 2008, 20, 2952. https://doi.org/10.1002/adma.200800606
  12. Thompson, B. C.; Fréchet, J. M. Angew. Chem. Int. Ed. 2008, 47, 58. https://doi.org/10.1002/anie.200702506
  13. Chen, Y. J.; Yang, S. H.; Hsu, C. S. Chem. Rev. 2009, 109, 5868. https://doi.org/10.1021/cr900182s
  14. Wu, W. C. ; Lee, W. Y.; Pai, C. L.; Chen, W. C.; Tuan, C. S.; Lin,J. L. J. Polym. Sci. Polym. Phys. 2007, 45, 67. https://doi.org/10.1002/polb.20997
  15. Tsai, J. H.; Chueh, C. C.; Lai, M. H.; Wang, C. F.; Chen, W. C.; Ko, B. T.; Ting, C. Macromolecules 2009, 42(6), 1897. https://doi.org/10.1021/ma802720n
  16. Chang, Y. T.; Hsu, S. L.; Chen, G. Y.; Su, M. H.; Singh, T. A.; Diau, W. G.; Wei, K. H. Adv. Funct. Mater. 2008, 18, 2356. https://doi.org/10.1002/adfm.200701150
  17. Inganas, O.; Zhang, F.; Tvingstedt, K.; Andersson, L. M. Hellstrom, S.; Andersson, M. R. Adv. Mater. 2010, 22, E100. https://doi.org/10.1002/adma.200904407
  18. Lai, M. H.; Chueh, C. C.; Chen, W. C.; Wu, J. L.; Chen, F. C. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 973. https://doi.org/10.1002/pola.23219
  19. Gadisa, A.; Mammo, W.; Andersson, L. M.; Admassie, S.; Zhang, F.; Andersson, M. R.; Inganas, O. Adv. Funct. Mater. 2007, 17, 3836. https://doi.org/10.1002/adfm.200700441
  20. Peng, Q.; Zheng, Q. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 3399. https://doi.org/10.1002/pola.23419
  21. Lee, J. Y.; Shin, W. S.; Haw, J. R.; Moon, D. K. J. Mater. Chem. 2009, 19, 4938. https://doi.org/10.1039/b823536h
  22. Yamamoto, T.; Zhou, Z. H.; Kanbara, T.; Shimura, M.; Kizu, K.; Maruyama, T.; Nakamura, Y.; Fukuda, T.; Lee, B. L.; Ooba, N.; Tomaru, S.; Kurihara, T.; Kaino, T.; Kubota, K.; Sasaki, S. J. Am.Chem. Soc. 1996, 118, 10389. https://doi.org/10.1021/ja961550t
  23. Yang, R.; Tian, R.; Yan, J.; Zhang, Y.; Yang, J.; Hou, O.; Yang, W.; Zhang, C.; Cao, Y. Macromolecules 2005, 38, 244. https://doi.org/10.1021/ma047969i
  24. Tsubata, Y.; Suzuki, T.; Miyashi, T. J. Org. Chem. 1992, 57, 6749. https://doi.org/10.1021/jo00051a015
  25. Ulrich, M. W. T.; Zhou, M. J. Org. Chem. 1994, 59, 4988. https://doi.org/10.1021/jo00096a049
  26. Gray, G. W.; Hird, M.; Lacey, D.; Toyne, K. J. J. Chem. Soc. Perkin Trans. 1989, 2, 2041.
  27. Tsami, A.; Yang, X.-H.; Farrell, T.; Neher, D.; Holder, E. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 7794. https://doi.org/10.1002/pola.23081
  28. Zhang, G.; Fu, Y.; Zhang, Q.; Xie, Z. Polymer 2010, 51, 2313. https://doi.org/10.1016/j.polymer.2010.03.050
  29. Blouin, N.; Michaud, A.; Gendron, D.; Wakim, S.; Blair, E.; Neagu- Plesu, R.; Belletete, M.; Durocher, G.; Tao, Y.; Leclerc, M. J. Am. Chem. Soc. 2008, 130, 732. https://doi.org/10.1021/ja0771989
  30. Yang, J.; Jiang, C. Y.; Zhang, Y.; Yang, R. Q.; Yang, W.; Hou, Q.; Cao, Y. Macromolecules 2004, 37, 1211. https://doi.org/10.1021/ma035743u
  31. Yang, R. Q.; Tian, R. Y.; Yan, J. G.; Zhang, Y.; Yang, J.; Hou, Q.; Yang, W.; Zhang, C.; Cao, Y. Macromolecules 2005, 38, 244. https://doi.org/10.1021/ma047969i
  32. Lee, J-Y.; Shin, W-S.; Haw, J-R.; Moon, D.-K. J. Mater. Chem. 2009, 19, 4938. https://doi.org/10.1039/b823536h

Cited by

  1. Effects of Exciton Polarity in Charge-Transfer Polymer/PCBM Bulk Heterojunction Films vol.5, pp.11, 2014, https://doi.org/10.1021/jz5005957
  2. C-Shaped Diastereomers Containing Cofacial Thiophene-Substituted Quinoxaline Rings: Synthesis, Photophysical Properties, and X-ray Crystallography vol.79, pp.10, 2014, https://doi.org/10.1021/jo500053m
  3. Ferric Porphyrin-Based Porous Organic Polymers for CO2 Photocatalytic Reduction to Syngas with Selectivity Control vol.33, pp.22, 2011, https://doi.org/10.1021/acs.chemmater.1c03136