• Title/Summary/Keyword: holstein beef cattle

Search Result 46, Processing Time 0.029 seconds

Application of the melanocortin 1 receptor (MC1R) gene for discrimination of Hanwoo from Holstein beef using real-time polymerase chain reaction (PCR)

  • Ra, Do-Kyung;Lee, Sung-Mo;Park, Eun-Jeong;Lee, Jung-Goo
    • Korean Journal of Veterinary Service
    • /
    • v.30 no.4
    • /
    • pp.557-562
    • /
    • 2007
  • This study was carried out to discriminate Hanwoo from the milking and hybrid cattle by detection of MC1R gene related to bovine hair color. One hundred sixty six samples were collected from the abattoir (n = 106) and local market (n = 60). The beef from abattoir were originated from Hanwoo (n=27), Holstein (n=29), Hybrid (n=45) and imported cattle (n=5), respectively. The beef from market consisted of Hanwoo (n=36), Holstein (n=7) and imported ones (n=17). Commercialized screening kit (Kogenebiotec, Korea) was used for MC1R gene analysis. As a result, Hanwoo was discriminated from Holstein. However, 9 of 45 hybrid and 11 of 22 imported beef samples were indistinguishable from Hanwoo. It could be explained by second generation of crossing of Hanwoo with Holstein or the cattle with silver or yellow hair. This results suggest that additional tests as well as MC1R gene detection be needed to confirm Hanwoo beef among cattle beef.

Study on Processing Quality of Different Parts of Pork and Beef (돈육 및 우육 부위별 가공적성 연구)

  • Choi, Yun-Sang;Ku, Su-Kyung;Lee, Hae-Jin;Sung, Jung-Min;Jeon, Ki-Hong;Kim, Hyun-Wook;Kim, Tae-Kyung;Kim, Young-Boong
    • Korean journal of food and cookery science
    • /
    • v.32 no.2
    • /
    • pp.157-167
    • /
    • 2016
  • Purpose: The objective of this study was to investigate the quality characteristics of pork and beef meat according to species (pork: modern genotype pork, Korean native black pork; beef: Holstein, Korean native cattle) and cuts (pork: shoulder, ham, loin; beef: loin, tenderness, round). Methods: The moisture content, protein content, fat content, ash content, fatty acid compositions pH, whater holding capacity, cooking loss, shear force, color, and sensory characteristics were measured in triplicate. Results: The moisture content, pH, cooking loss, and shear force of modern genotype pork were significantly higher than the Korean native black pork; in addition, the moisture content of loin was significantly higher than shoulder and ham. The fatty acid compositions for different parts of pork showed no significant differences. Among the sensory characteristics, the parameters of pork were not significantly different. The moisture content of Holstein was significantly higher than Korean native cattle. The fatty acid composition of beef could not confirm the specific differences. Water holding capacity of Korean native cattle was higher than Holstein, while cooking loss of Korean native cattle was lower than Holstein. Overall acceptability scores of Korean native cattle was higher than Holstein. Conclusion: The study results of several parameters in selected raw meat samples provide useful information for developing new strategies to improve the quality of meat products consumption.

Emission Rate of Greenhouse Gases from Bedding Materials of Cowshed Floor: Lab-scale simulation study (우사깔짚에서 발생되는 온실가스 배출량 산정: 모의 실험결과)

  • Cho, Won Sil;Lee, Jin Eui;Park, Kyu Hyun;Kim, Jeong Dae;Ra, Chang Six
    • Journal of Animal Science and Technology
    • /
    • v.55 no.1
    • /
    • pp.67-74
    • /
    • 2013
  • To know the emission amount of greenhouse gases from bedding materials of cowshed floor, the emission rates of methane ($CH_4$) and nitrous oxide ($N_2O$) gases from a simulated cowshed floor (SCF) with sawdust that manure loading rate into the bedding material could be accurately controlled were assessed in this study. The manure loading rates of Korean beef and Holstein dairy cattle into the SCF of $0.258m^2$ surface area with 10 to 15 cm height sawdust were $1.586kg/m^2/d$ and $3.588kg/m^2/d$, respectively, and those were calculated on the basis of "Standard model for sustainable livestock" and "Data for excretion amount of manure from livestock". All experiments were done in triplicates in three different seasons (May to July, Sep. to Nov., and Feb. to Apr.) using 12 SCFs. The effects of bedding material thickness on $CH_4$ and $N_2O$ emission from SCFs for both Korean beef cattle and Holstein dairy cattle were not statistically significant (p<0.05). Emission amount of $CH_4$ and $N_2O$ per square meter of SCF for Holstein dairy cattle was 7.5 and 1.2 times higher than that of Korean beef cattle, respectively. The yearly $CH_4$ amount per head was 17.7 times higher in Holstein dairy cattle, obtaining 130.4 g/head/year from SCF for Holstein dairy cattle and 7.4 g/head/year from SCF for Korean beef cattle, and $N_2O$ was also 3.8 times higher in Holstein dairy cattle (3,267 g/head/year in Korean beef cattle and 14,719 g/head/year in Holstein dairy cattle). However, the $N_2O$-N per loaded nitrogen into SCF was higher in Korean beef cattle, having 0.2148 and 0.1632 kg $N_2O$-N/kg N in Korean beef cattle and Holstein dairy cattle, respectively, and those values were 3.07 and 2.33 times higher than that of Intergovernmental Panel on Climate Change (IPCC) 2006 guideline (GL) (0.07 kg $N_2O$-N/kg N).

Identification of Beef Breed using DNA Marker of Coat Color Genes (모색 발현 유전자의 DNA Marker를 이용한 쇠고기 품종 판별)

  • Chung Eui-Ryong;Chung Ku-Young
    • Food Science of Animal Resources
    • /
    • v.24 no.4
    • /
    • pp.355-360
    • /
    • 2004
  • In Korean beef market, one of the major problems is mislabeling or fraudulent distribution of Holstein dairy meat or imported beef as domestic Hanwoo meat. Therefore, there has been a great need for a development of technology to identify beef breeds in meat and meat products. This study was carried out to develop the accurate and reliable method for the identification of beef breed using PCR-RFLP marker of MC1R, MGF and TYRPl genes affecting coat colors in cattle. A single base substitution (G\longrightarrowT transition) at the codon for amino acid position 104 of MC1R gene was identified between Hanwoo and Holstein and Angus breeds. The change at this position creates Msp I restriction site in Holstein and Angus, but not in Hanwoo. When the DNA amplified products (537 bp) was digested with Msp I, Hanwoo meat showed a single band of 537bp, while two fragments of 329bp and 208 bp were observed in Holstein meat and Angus breed, respectively. Thus, breed-specific RFLP marker in the MC1R gene can be used to distinguish between Hanwoo meat and Holstein and Angus meats. In the RFLP genotype of MGF gene, the frequency of r/r type was 75% in Manwoo, whereas the frequency of R/R was 80% in Hereford breed. Holstein and Angus breeds showed 100% for R/r type. Therefore, Hanwoo meat showed significant difference in the MGF genotype frequencies compared with those of Holstein meat and imported beef cattle breeds. However, TYRP1 gene showed the same genotype in all breeds examined. Thus, this TYRP1 gene can not be used as a molecular marker for breed identification. As a consequence, we suggest that RFLP markers of the MC1R and MGF coat color genes could be used as DNA marker for identification of Hanwoo meat from Holstein and imported meats.

Application of RAPD Methods in Meat for Beef Breed Identification

  • Choy, Y.H.;Oh, S.J.;Kang, J.O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.12
    • /
    • pp.1655-1658
    • /
    • 2001
  • Bovine genome samples were collected from meat of three different beef breeds (Hanwoo, Holstein and imported beef breed) that are commercially merchandized in Korean beef market. Operon B (OPB)-kits were used as random primers (3, 7, 10, 11, 12, 14) in random amplified polymorphic DNA (RAPD) method on whole genome. Each primer provided characteristic bands that were highly polymorphic. Each single primer could provide relatively efficient polymorphic band patterns among breeds. However, use of two or more primers in combination is recommended to improve resolution of experiments with higher molecular weight bands of DNA. In our experiments, OPB-11 resolved well between beef cattle breeds and Holstein. And OPB-7, 12 and 14 could be combined with OPB-11 to identify Hanwoo beef from the other two kinds of beef.

Growth- and Breed-related Changes of Fetal Development in Cattle

  • Mao, W.H.;Albrecht, E.;Teuscher, F.;Yang, Q.;Zhao, R.Q.;Wegner, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.5
    • /
    • pp.640-647
    • /
    • 2008
  • Breed differences in adult animals are determined during fetal development. If interventions are to be developed that influence growth of muscle and fat, it is important to know at which time during gestation breed differences appear and are fixed. The objective of this study was to characterize fetal development in cattle of different breeds. Pregnant cows of 4 cattle breeds with different growth impetus and muscularity were slaughtered under normal processing conditions and the fetuses were removed. German Angus, a typical beef cattle; Galloway, a smaller, environmentally resistant beef type; Holstein Friesian, a dairy type; and Belgian Blue, an extreme type for muscle growth were used. Fetuses of each breed were investigated at 3, 6, and 9 mo of gestation. Fetuses were weighed and dissected into carcass, organs, and muscles. Body fat weight was obtained using the Soxhlet extraction method. Fetal weight increased most rapidly in the third trimester of gestation mainly due to the accelerated muscle and fat deposition. The organ weight to body weight (BW) ratios decreased and the muscle and fat weight to BW ratios increased. At 3 mo of gestation, Galloway fetuses had the significantly smallest BW, half-carcass weight, leg weight, organ weight, muscle weight and shortest leg length. In contrast, Holstein fetuses had the significantly greatest BW, liver, kidney, and lung weights and significantly longest leg length among the 4 breeds, but no differences between Holstein Friesian and Belgian Blue were detected in half-carcass and leg weight. Indeed, Belgian Blue fetuses had the significantly greatest half-carcass weight, leg weight, and muscle weight at 9 mo of gestation, and Galloway had a significantly greater body fat to BW ratio than Holstein Friesian and Belgian Blue. These differences were not evident at 3 and 6 mo of gestation. These data show that the profound increase of tissue and organ weights occurred in later gestation in cattle fetuses even though breed differences were evident as early as 3 mo of gestation. Depending on the tissue of interest, impacting fetal growth likely needs to occur early in gestation before the appearance of breed-specific differences.

Identification of Hanwoo (Korean Native Cattle) Beef in Restaurants using Real-time PCR (시중 음식점에서 판매되는 쇠고기의 유전자 분석을 이용한 한우육 감별)

  • Kim Jin-Man;Nam Yong-Suk;Choi Ji-Hun;Lee Mi-Ae;Jeong Jong-Yon;Kim Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.25 no.2
    • /
    • pp.203-209
    • /
    • 2005
  • Real time-polymerase chain reaction (RT-PCR) is currently considered as the most sensitive method to detect low abundant DNAs in samples. Compared to conventional PCR, real-time PCR has a high reliability because of excluding false-positive results and can allow a simultaneous faster detection and quantification of target DNAs. This study was carried out to identify the Hanwoo (Korean native cattle) beef by genotyping after DNA extraction of commercial beef in 41 restaurants. Since Hanwoo, Holstein and imported cattle meat have different patterns in the MC1R gene associated with the coat colors of cattles (C-type, C/T-type or T-type), we could identify the genotype using real-time PCR The result of real-time PCR assay for beef samples in 41 restaurants which are asserted to sell Hanwoo beef only, showed that 29 of 41 samples were Hanwoo beef gene type (T-type) and 12 of 41 samples were Holstein or imported cattle gene type (C-type or C/T-type). Therefore, the proportion of Han-woo beef was $70.7\%$ and the proportion of Holstein or imported cattle meat was $29.3\%(C/T-type; 12.2\%,\;C-type; 17.1\%)$.

The effect of gender status on the growth performance, carcass and meat quality traits of young crossbred Holstein-Friesian×Limousin cattle

  • Pogorzelska-Przybylek, Paulina;Nogalski, Zenon;Sobczuk-Szul, Monika;Momot, Martyna
    • Animal Bioscience
    • /
    • v.34 no.5
    • /
    • pp.914-921
    • /
    • 2021
  • Objective: The objective of this study was to compare growth performance, carcass traits and meat quality in young bulls, steers and heifers produced by crossing Limousin bulls with Holstein-Friesian cows, fattened semi-intensively and slaughtered at 18 months of age. Methods: Thirty-one young calves were reared in a conventional production system, and were fed milk replacer, hay and concentrate. At 6 months of age, the animals were divided into groups based on gender, and were fed a total mixed ration composed of grass silage, concentrates I and II in a semi-intensive production system. At the end of the fattening period (18 months), the animals were slaughtered, carcass quality was evaluated, and samples of musculus longissimus thoracis were collected to determine the proximate composition and quality of meat. Results: Bulls were characterized by the highest percentage share of the most valuable cuts in the carcass, and three-rib sections from bull carcasses had the highest lean meat content with low intramuscular fat content (0.93%). No significant differences in carcass conformation, dressing percentage or the percentage share of round in the right half-carcass were found between bulls vs. steers and heifers. Heifers and steers had higher carcass fat content than bulls, which had a positive influence on the sensory properties of beef. In comparison with the meat of bulls, the meat of steers and heifers was characterized by more desirable physical properties and sensory attributes (water-holding capacity, shear force, color lightness, aroma, juiciness, tenderness, flavor). Conclusion: Under the semi-intensive production system, heifers and steers had higher carcass fat content than bulls, which had a positive effect on the sensory properties of beef. Bulls are better suited for intensive systems, which contribute to improving the quality of their meat. The results of this study may encourage producers to breed steers and heifers for beef.

Establishment of Genetic Characteristics and Individual Identification System Using Microsatellite loci in Domestic Beef Cattle (초위성체 DNA표지인자를 이용한 국내 육우집단의 품종특성 및 개체식별 체계설정)

  • Kim, Sang-Wook;Jang, Hee-Kyung;Kim, Kwan-Suk;Kim, Jong-Joo;Jeon, Jin-Tae;Yoon, Du-Hak;Kang, Seong-Ho;Jung, Hyo-Il;Cheong, Il-Cheong
    • Journal of Animal Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.273-282
    • /
    • 2009
  • DNA marker information is used to identify or distinguish cattle breeds or individual animal. The purpose of this study was to apply Bovine Genotypes Kit Version 1.1/2.1 to bovine DNA samples (National Institute of Animal Science) taken from Australian / American beef (n=148), Holstein beef (n=170) and Hanwoo cattle (n=177) bred in Jeongeub, Jeonbuk, Korea, so that it could distinguish Hanwoo breed. The Bovine Genotype Kits consist of 16 ISAG MS markers, which were used to build a database of genotypes in each group. Genotyping results were analyzed using MS Tool kit and Phylip program to create phylogenetic tree. The GeneClass 2.0 was used to estimate breed identification. These analyses found that this kit had 100% capacity to distinguish Hanwoo beef, 95.3% capacity to differentiate Australian / American beef and 90% capacity to identify Korean Holstein steer beef. Hence, it is expected that 16 commercial microsatellite markers is useful to categorizegenetic characteristics of Hanwoo breed and also identify Hanwoo individuals and the origin of beef. In particular, it is expected that these markers will be advantageous in discriminating domestic Holstein beef from Australian / Americanbeef.

Identification of Hanwoo (Native Korean Cattle Breed) Beef by Real-time PCR Using the MC1R Gene in 5 Provinces of South Korea

  • Park, Jung-Min;Shin, Jin-Ho;Lee, Dan-Won;Song, Jae-Chul;Suh, Hyung-Joo;Chang, Un-Jae;Kim, Jin-Man
    • Food Science of Animal Resources
    • /
    • v.29 no.6
    • /
    • pp.668-672
    • /
    • 2009
  • This paper describes the differentiation between native Korean cattle (Hanwoo) and Holsteins or imported cattle using the real-time polymerase chain reaction (PCR) by targeting the sequence of the melanocortin 1 receptor (MC1R) gene. A rapid and accurate method was developed to identify Hanwoo by genotyping the DNA extracted from 295 commercial beef samples (obtained from 5 provinces in South Korea) labeled as Hanwoo beef. The results of real-time PCR assays for the proportions of Hanwoo were 84, 85.7, 95, 91.4, and 90% in the areas of Seoul, Joongbu, Youngnam, Honam, and Chungcheong, respectively. Thus, the beef samples from 295 butcher shops, which asserted to only sell Hanwoo, showed that 259 of 295 samples were of the Hanwoo beef gene type (T-type) and 36 of 295 samples were Holsteins of imported dairy cattle gene types (C-type or C/T type). In conclusion, the proportion of Hanwoo beef was 87.8% and the proportion of Holstein or imported dairy cattle meat was 12.2% (C-type: 9.8%, C/T-type: 2.4%). Generally, most consumers can not differentiate imported meat from Hanwoo beef. Therefore, Hanwoo beef and imported dairy cattle meat that is sold in butcher shops should have mandatory identification by using MC1R genotyping based on real-time PCR.