DOI QR코드

DOI QR Code

Emission Rate of Greenhouse Gases from Bedding Materials of Cowshed Floor: Lab-scale simulation study

우사깔짚에서 발생되는 온실가스 배출량 산정: 모의 실험결과

  • Cho, Won Sil (Department of Animal Life System, College of Animal Life Science, Kangwon National University) ;
  • Lee, Jin Eui (Department of Animal Life System, College of Animal Life Science, Kangwon National University) ;
  • Park, Kyu Hyun (National Institute of Animal Science, RDA) ;
  • Kim, Jeong Dae (Department of Animal Life System, College of Animal Life Science, Kangwon National University) ;
  • Ra, Chang Six (Department of Animal Life System, College of Animal Life Science, Kangwon National University)
  • 조원실 (강원대학교 동물생명과학대학) ;
  • 이진의 (강원대학교 동물생명과학대학) ;
  • 박규현 (국립축산과학원) ;
  • 김정대 (강원대학교 동물생명과학대학) ;
  • 라창식 (강원대학교 동물생명과학대학)
  • Received : 2013.01.02
  • Accepted : 2013.02.19
  • Published : 2013.02.28

Abstract

To know the emission amount of greenhouse gases from bedding materials of cowshed floor, the emission rates of methane ($CH_4$) and nitrous oxide ($N_2O$) gases from a simulated cowshed floor (SCF) with sawdust that manure loading rate into the bedding material could be accurately controlled were assessed in this study. The manure loading rates of Korean beef and Holstein dairy cattle into the SCF of $0.258m^2$ surface area with 10 to 15 cm height sawdust were $1.586kg/m^2/d$ and $3.588kg/m^2/d$, respectively, and those were calculated on the basis of "Standard model for sustainable livestock" and "Data for excretion amount of manure from livestock". All experiments were done in triplicates in three different seasons (May to July, Sep. to Nov., and Feb. to Apr.) using 12 SCFs. The effects of bedding material thickness on $CH_4$ and $N_2O$ emission from SCFs for both Korean beef cattle and Holstein dairy cattle were not statistically significant (p<0.05). Emission amount of $CH_4$ and $N_2O$ per square meter of SCF for Holstein dairy cattle was 7.5 and 1.2 times higher than that of Korean beef cattle, respectively. The yearly $CH_4$ amount per head was 17.7 times higher in Holstein dairy cattle, obtaining 130.4 g/head/year from SCF for Holstein dairy cattle and 7.4 g/head/year from SCF for Korean beef cattle, and $N_2O$ was also 3.8 times higher in Holstein dairy cattle (3,267 g/head/year in Korean beef cattle and 14,719 g/head/year in Holstein dairy cattle). However, the $N_2O$-N per loaded nitrogen into SCF was higher in Korean beef cattle, having 0.2148 and 0.1632 kg $N_2O$-N/kg N in Korean beef cattle and Holstein dairy cattle, respectively, and those values were 3.07 and 2.33 times higher than that of Intergovernmental Panel on Climate Change (IPCC) 2006 guideline (GL) (0.07 kg $N_2O$-N/kg N).

우사바닥깔짚으로부터의 온실가스 배출량을 산정하기 위해 깔짚으로의 분뇨부하량을 정확히 조절할 수 있는 모의우사바닥에서의 깔짚두께별 $CH_4$$N_2O$ 가스 발생량을 조사하였다. 톱밥이 10, 15cm 높이로 깔린 $0.2583m^2$(L 0.63 m${\times}$W 0.41 m) 크기의 우사바닥으로의 한우와 젖소의 분뇨부하는 친환경 축사표준모델의 축사면적과 축종별 일일 분뇨배설량 자료를 기준으로 한우는 $1.586kg/m^2/d$, 젖소는 $3.588kg/m^2/d$로 정하고 24시간 주기로 분뇨를 투입/혼합하면서 깔짚으로부터 발생하는 온실가스 발생량을 조사하였다. 총 12개의 모의우사바닥을 이용하여 모든 실험은 3반복으로 3회에 걸쳐 수행되었다(5~7월, 9~11월, 2~4월). 그 결과 단위면적당 $CH_4$ 발생량은 한우, 젖소 모두에서 깔짚이 두꺼운 경우 적게 발생하는 경향을 보였으나 통계적으로 유의적인 차이가 없었으며(p<0.05), $N_2O$ 발생량의 경우에도 깔짚두께에 따른 차이가 없는 것으로 나타났다. 한우와 젖소를 비교할 때 단위면적당 온실가스 발생량은 젖소가 $CH_4$는 약 7.5배, $N_2O$는 약 1.2배 많았으며 연간 배출되는 $CH_4$는 한우 7.4 g/head/year, 젖소 130.4 g/head/year로 젖소가 한우에 비해 21배 높은 것으로 나타났다. 또한 $N_2O$는 한우 3,267 g/head/year, 젖소 14,719 g/head/year로 젖소가 약 4.5 배 많았으나 배설된 N 대비 $N_2O$-N은 한우 0.2148 kg $N_2O$-N/kg N, 젖소 0.1632 kg $N_2O$-N/kg N으로 오히려 한우가 높았으며 IPCC 2006 GL값 0.07 kg $N_2O$-N/kg N과 비교시 한우는 약 3.07배, 젖소는 약 2.33배 높은 것으로 나타났다.

Keywords

References

  1. Amon, M., Kryvoruchko, V., Amon, T. and Zechmeister-Boltenstern, S. 2006. Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment. Agric. Ecosyst. Environ. 112:153-162. https://doi.org/10.1016/j.agee.2005.08.030
  2. APHA. 1998. Standard methods for the examination of water and wastewater. WPCF.
  3. Gupta, P. K., Jha, A. K., Koul, S., Sharma, P., Pradhan, V., Gupta, V., Sharma, C. and Singh, N. 2007. Methane and nitrous oxide emission from bovine manure management practices in India. Environ. Pollut. 146:219-224. https://doi.org/10.1016/j.envpol.2006.04.039
  4. IPCC, 1996. Climate change 1995: the science of climate change. Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, U.K.
  5. IPCC. 2001. Climate change 2001: the scientific basis. http://www.grida.no/climate/ipcc_tar/wgl/index.htm Accessed Apr. 11, 2007.
  6. IPCC. 2006. Intergovernmental Panel on Climate Change Guidelines for National Greenhouse Gas Inventories. http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_11_Ch1_N_2O&CO_2.pdf. 14 Apr. 2008.
  7. Kaparaju. P. and Rintala J. 2011. Mitigation of greenhouse gas emissions by adopting anaerobic digestion technology on dairy, sow, and pig farms in Finland. Renewable energy. 36:31-41 https://doi.org/10.1016/j.renene.2010.05.016
  8. Kim, D. S. and Oh, J. M. 2003. $N_2O$ emissions from agricultural soils and their characteristics. J. Kor. Atmo. Environ. 19:529-540.
  9. Kim, D. S., Jang, Y. K. and Jeuon, E. C. 2000. Surface flux measurements of methane from landfills by closed chamber technique and its validation, J of Kor. Atmo. Environ. 16:499-509.
  10. Lim, B. R., Cho, K. J., Jung, E. H., Yang J. K. and Lee, S. G. 2011. Estimation of greenhouse gas emission from livestock wastewater treatment plants. J. Kor. Waste management. 28:175-183.
  11. Ministry for food, agriculture, forestry and fisheries. 2008. Ecofriendly Agricultural Standard Model. 11-1541000-000005-01. KOREA. Pp. 44-45.
  12. Oh, W. K., Chu, Y. Y, Juong, Y. M. and Kim, K. G. 2009. Estimating the Greenhouse Gases Emission Rates and their Emission Factors of a wastewater treatment plant with an MLE Precess, J. Kor. Environ. Analy. 12:87-95.
  13. Sa, J. H. 2010. Ammonia flux from cow manure in relation to the environmental factors in livestock facilities. J. Kor. Atmo. Environ. 26:432-442. https://doi.org/10.5572/KOSAE.2010.26.4.432
  14. Shen, Y., Ren, L., Li, G., Chen, T. and Guo, R. 2011. Influence of aeration on $CH_4$, $N_2O$ and $NH_3$ emissions during aerobic compositing of a chicken manure and high C/N waste mixture waste management. 31:33-38. https://doi.org/10.1016/j.wasman.2010.08.019
  15. Snyder, C. S., Bruulsema, T. W., Jensen, T. L. and Fixen P. E. 2009. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric. Ecosys. Environ. 133:247-66. https://doi.org/10.1016/j.agee.2009.04.021
  16. Su, J., Liu, B. Y. and Chang, Y. C. 2003. Emission of greenhouse gas from livestock waste and wastewater treatment in Taiwan. Agric. Ecosyst. Environ. 95:253-63. https://doi.org/10.1016/S0167-8809(02)00090-7
  17. Wang, J., Duan, C., Ji, Y. and Sun, Y. 2010. Methane emissions during storage of different treatments from cattle manure in Tianjin. J. Environ. Sci. 22:1564-69. https://doi.org/10.1016/S1001-0742(09)60290-4
  18. Yamulki, S. 2006. Effect of straw addition on nitrous oxide and methane emissions from stored farmyard manures. Agric. Ecosys. Environ. 112:140-145. https://doi.org/10.1016/j.agee.2005.08.013
  19. Yun, S. and Yu, D. 1998. Quantitative valuation of greenhouse gas of a agriculture livestock production using LCA technique. J. Kor. Organic Agric. 7:17-34.