• Title/Summary/Keyword: holographic display

Search Result 120, Processing Time 0.022 seconds

3-D Display;Electro-holography Based

  • Son, Jung-Young;Kim, Dae-Sik;Cha, Kyung-Hun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1553-1560
    • /
    • 2006
  • The idea of displaying hologram electronically has been existed since mid $1960^{th}$. But it is still in the beginning stage due to the lacks of proper means of displaying and recording, which will bear the large amount of data contained in the hologram though holographic video and digital holography have demonstrated the possibility of displaying and photographing hologram electronically. It is expected that holography based 3 dimensional imaging system will be introduced much later than that on multiview 3 dimensional imaging methods which are being developed to generate more realistic and natural image than high definition plane images.

  • PDF

Manufacturing Mobile Displays & Systems on Glass (

  • Nobari, Ali Reza;Mourgue, Stephane;Clube, Francis;Jorda, Mathieu;Iriguchi, Chiharu;Inoue, Satoshi;Grass, Elmar;Mayer, Herbert
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.676-678
    • /
    • 2005
  • Future Mobile displays and the emerging systems on Glass for the upcoming TFT_LCDs or Active-OLEDs based on LTPS, and the exciting c-Si critically require very-high resolution lithography. We report the methodology and latest results on the alignment, magnification control and stitching systems on a HMA500 holographic mask aligner for printing $0.5{\mu}m-resolution$ display patterns onto glass substrates of dimensions up to $500mm{\times}400mm$.

  • PDF

Rapid Calculation of CGH Using the Multiplication of Down-scaled CGH with Shifted Concave Lens Array Function

  • Lee, Chang-Joo;Lee, Seung-Yeol
    • Current Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.51-59
    • /
    • 2022
  • Holographic display technology is one of the promising 3D display technologies. However, the large amount of computation time required to generate computer-generated holograms (CGH) is a major obstacle to the commercialization of digital hologram. In various systems such as multi-depth head-up-displays with hologram contents, it is important to transmit hologram data in real time. In this paper, we propose a rapid CGH computation method by applying an arraying of a down-scaled hologram with the multiplication of a shifted concave lens function array. Compared to conventional angular spectrum method (ASM) calculation, we achieved about 39 times faster calculation speed for 3840 × 2160 pixel CGH calculation. Through the numerical investigation and experiments, we verified the degradation of reconstructed hologram image quality made by the proposed method is not so much compared to conventional ASM.

Compensate and analyze of Optical Characteristics of AR display using Zernike Polynomials

  • Narzulloev Oybek Mirzaevich;Jumamurod Aralov Farhod Ugle;Leehwan Hwang;Seunghyun Lee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.77-84
    • /
    • 2024
  • Aberration is still a problem for making augmented reality displays. The existing methods to solve this problem are either slow and inefficient, consume too much battery, or are too complex for straightforward implementation. There are still some problems with image quality, and users may suffer from eye strain and headaches because the images provided to each eye lack accuracy, causing the brain to receive mismatched cues between the vergence and accommodation of the eyes. In this paper, we implemented a computer simulation of an optical aberration using Zernike polynomials which are defocus, trefoil, coma, and spherical. The research showed that these optical aberrations impact the Point Spread Function (PSF) and Modulation Transfer Function (MTF). We employed the phase conjugate technique to mitigate aberrations. The findings revealed that the most significant impact on the PSF and MTF comes from the influence of spherical aberration and coma aberration.

A New Coding Technique for Scalable Video Service of Digital Hologram (디지털 홀로그램의 적응적 비디오 서비스를 위한 코딩 기법)

  • Seo, Young-Ho;Bea, Yoon-Jin;Lee, Yoon-Hyuk;Choi, Hyun-Jun;Yoo, Ji-Sang;Kim, Dong-Wook
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.92-103
    • /
    • 2012
  • In this paper, we discuss and propose a new algorithm of coding technique for scalably servicing holographic video in various decoding environment. The proposed algorithm consists of the hologram-based resolution scalable coding (HRS) and the light source-based SNR scalable coding (LSS). They are classified by the method generating and capturing hologram. HRS is a scalable coding technique for the optically captured hologram and LSS is one for the light source before generating hologram. HRS can provide the scalable service of 8 steps with the compression ratio from 1:1 to 100:1 for a $1,024{\times}1,024$ hologram. LSS can also provide the various service depending on the number of the light source division using lossless compression. The proposed techniques showed the scalable holographic video service according to the display with the various resolutions, computational power of the receiving equipment, and the network bandwidth.

Novel optical representation of binary data to improve the beam intensity uniformity at the recording plane in the storage of Fourier holograms of digital data (디지털 데이터의 Fourier 홀로그램 저장에서 기록면의 빔세기 균일도 향상을 위한 2진 데이터의 새로운 광학적 표현)

  • 장주석;신동학;오용석
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.4
    • /
    • pp.339-344
    • /
    • 2001
  • We propose a method to represent binary data by modulating both the intensity and the phase of uniform plane waves with a twisted-nematic liquid crystal display for holographic digital data storage especially in a disk-shaped recording medium. As far as intensity modulation is concerned, our method is not different from the conventional method, because binary bit values 0 and 1 are represented by the dark (off) and lit (on) states of the liquid crystal display pixels, respectively (or vice versa). With our method, however, the on pixels are also controlled so that the beams passing through them can have one of two different phase delays. If the difference of the two phase delays is close to 180 degrees, we can reduce the dc component of the data image and thus improve the beam intensity uniformity at the holographic recording plane when Fourier plane holograms are recorded. The feasibility of our method is experimentally demonstrated. rated.

  • PDF

Total-internal-reflection Holographic Photo-lithography by Using Incoherent Light (비가간섭광을 이용한 내부전반사 홀로그래픽 리소그라피)

  • Lee, Joon-Sub;Park, Woo-Jae;Lee, Ji-Whan;Song, Seok-Ho;Lee, Sung-Jin
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.6
    • /
    • pp.334-338
    • /
    • 2009
  • Recently, with increasing demand for flat-panel display product, methods for large area patterning are required. TIR (total internal reflection) holographic photo-lithography isstudied as one of the methods of large area lithography. In conventional TIR holography, light sources for hologram recording and image reconstruction are coherent beams such as laser beams. If the image is reconstructed with an incoherent light source such a UV lamp, the image noise from the coherence of light will be reduced and the UV lamp will be a better light source for large area exposure. We analyzed the effect of spectral bandwidth and angular bandwidth of the light source in image reconstruction and verified image blurring with experiments. For large area patterning which has micro-scale line width, it is expected that TIR holographic photo lithography by UV lamp will become a low-noise and low-priced technique.

Expanded Exit-Pupil Holographic Head-Mounted Display With High-Speed Digital Micromirror Device

  • Kim, Mugeon;Lim, Sungjin;Choi, Geunseop;Kim, Youngmin;Kim, Hwi;Hahn, Joonku
    • ETRI Journal
    • /
    • v.40 no.3
    • /
    • pp.366-375
    • /
    • 2018
  • Recently, techniques involving head-mounted displays (HMDs) have attracted much attention from academia and industry owing to the increased demand for virtual reality and augmented reality applications. Because HMDs are positioned near to users' eyes, it is important to solve the accommodation-vergence conflict problem to prevent dizziness. Therefore, holography is considered ideal for implementing HMDs. However, within the Nyquist region, the accommodation effect is limited by the space-bandwidth-product of the signal, which is determined by the sampling number of spatial light modulators. In addition, information about the angular spectrum is duplicated over the Fourier domain, and it is necessary to filter out the redundancy. The size of the exit-pupil of the HMD is limited by the Nyquist sampling theory. We newly propose a holographic HMD with an expanded exit-pupil over the Nyquist region by using the time-multiplexing method, and the accommodation effect is enhanced. We realize time-multiplexing by synchronizing a high-speed digital micromirror device and a liquid-crystal shutter array. We also demonstrate the accommodation effect experimentally.

Digital Holographic Contents Manipulation using Convert and synthesize of Depth-map (깊이정보의 변환 및 합성 기법을 이용한 디지털 홀로그래픽 콘텐츠 저작)

  • Choi, Hyun-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.1010-1019
    • /
    • 2013
  • Recently, research on hologram, which can realize perfect 3-dimensional imaging, becomes more active. But hologram has the defect that it costs a lot in generation. Thus, this paper proposes a method to generate a new digital hologram contents by manipulating the existing digital hologram contents. That is, this paper proposes the method to manipulating the digital hologram contents by manipulating and/or synthesizing the depth information to get a new digital hologram contents. The proposed methods have been experimented with various depth informations and digital hologram contents. For each kind of depth information, it has been manipulated for its position and distance. The result was converted to a digital hologram by the computer-generated hologram method and the resulting hologram was reconstructed.

Holographic phase gratings in back- and frontlights for LCD's

  • Bastiaansen, C.W.M.;Heesch, C. van;Broer, D.J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.421-421
    • /
    • 2006
  • The light and energy-efficiency of classical liquid crystal displays is notoriously poor due to the use of absorption-based linear polarisers and colour filters. For instance, the light efficiency of PVAL polarisers is typically between 40 and 45 % and the colour filters have a typical efficiency below 35 % which results in a total light and energy-efficiency of the display below 10 %. In the past, a variety of polarizers were developed with an enhanced efficiency in generating linearly polarized light. Typically, these polarizers are based on the polarisationselective reflection, scattering or refraction of light i.e. one polarisation direction of light is directly transmitted to the LCD/viewer and the other polarization direction of light is depolarised and recycled which results in a typical efficiency for generating linearly polarized light of 70-85 %. Also, special colour filters have been proposed based on chiral-nematic reactive mesogens which increase the efficiency of generating colour. Despite the enormous progress in this field, a need persists for improved methods for generating polarized light and colour based on low cost optical components with a high efficiency. Here, the use of holographic phase gratings is reported for the generation of polarized light and colour. The phase grating are recorded in a photopolymer which is coated onto a backor frontlight for LCDs. Typically the recording is performed in the transmisson mode or in the waveguiding mode and slanted phase gratings are generated with their refractive index modulation at an angle between 20o and 45o with the normal of the substrate. It is shown that phase gratings with a high refractive index modulation and a high efficiency can be generated by a proper selection of the photopolymer and illumination conditions. These phase gratings coupleout linearly polarized light with a high contrast (> 100) and the light is directed directly to the LCD/viewer without the need for redirection foils. Dependent on the type of phase grating, the different colours are coupled-out at a slightly different angle which potentially increases the efficiency of classical colour filters. Moreover, the phase gratings are completely transparent in direct view which opens the possibility to use them in frontlights for LCDs. Holographic polarization gratings posses a periodic pattern in the polarization state of light (and not in the intensity of light). A periodic pattern in the polarization direction of linearly polarized light is obtained upon interference of two circularly polarized laser beams. In the second part of the lecture, it is shown that these periodic polarization patterns can be recorded in a linear photo-polymerizable polymer (LPP) and that such an alignment layer induces a period rotation in the director of (reactive and non-reactive) liquid crystals. By a proper design, optical components can be produced with only first order diffraction and with a very high efficiency (>0.98). It is shown that these diffraction gratings are potentially useful in projection displays with a high brightness and energy efficiency

  • PDF