Novel optical representation of binary data to improve the beam intensity uniformity at the recording plane in the storage of Fourier holograms of digital data

디지털 데이터의 Fourier 홀로그램 저장에서 기록면의 빔세기 균일도 향상을 위한 2진 데이터의 새로운 광학적 표현

  • 장주석 (부경대학교 전자컴퓨터정보통신공학부) ;
  • 신동학 (부경대학교 전자컴퓨터정보통신공학부) ;
  • 오용석 (부경대학교 전자컴퓨터정보통신공학부)
  • Published : 2001.08.01

Abstract

We propose a method to represent binary data by modulating both the intensity and the phase of uniform plane waves with a twisted-nematic liquid crystal display for holographic digital data storage especially in a disk-shaped recording medium. As far as intensity modulation is concerned, our method is not different from the conventional method, because binary bit values 0 and 1 are represented by the dark (off) and lit (on) states of the liquid crystal display pixels, respectively (or vice versa). With our method, however, the on pixels are also controlled so that the beams passing through them can have one of two different phase delays. If the difference of the two phase delays is close to 180 degrees, we can reduce the dc component of the data image and thus improve the beam intensity uniformity at the holographic recording plane when Fourier plane holograms are recorded. The feasibility of our method is experimentally demonstrated. rated.

특히 디스크형 기록 매질에 홀로그래픽 데이터를 저장함에 있어서 뒤틀린 니매틱 액정디스플레이를 사용하여 세기와 위상을 동시에 변조하는 이진 데이터 표현 방법을 제안한다. 세기 변조만을 생각하면 제안한 방법을 이진 비트 값 0과 1이 액정디스플레이 픽셀의 어둡고(off) 밝은(on) 상태로 (또는 그 반대로) 각각 표현되기 때문에 기존의 방법과는 다르지 않다. 그러나 제안한 방법에서는 on 픽셀을 통과하는 빔들이 두 가지의 서로 다른 위상 지연을 가지도록 제어된다. 만약 이 두 종류의 빔들 간의 위상지연 차이가 180도에 가까우면 Fourier 면 홀로그램 기록 시 기록 면에서 데이터 영상의 dc 성분을 감소시킬 수 있으며 따라서 빔 세기분포를 향상 시킬 수 있다. 그리고 제안한 방법의 유용성을 실험적으로도 입증하였다.

Keywords

References

  1. Opt. Lett. v.10 no.12 Optical-data-processing properties of a liquid-crystal television spatial light modulator H. K. Liu;J. A. Davis;R. A. Lilly
  2. Appl. Opt. v.25 Real-time pattern recognition using a modified liquid crystal television in a coherent optical correlator D. A. Gregory
  3. Opt. Lett. v.11 no.11 Real-time computer-generated hologram by means of liquid-crystal television spatial light modulator F. Mok;J. Diep;H. K. Liu;D. Psaltis
  4. Opt. Eng. v.29 no.3 Theory and design of the liquid crystal TV as an optical spatial phase modulator K. Lu;B. E. A. Saleh
  5. Science v.265 no.5 Volume holographic storage and retrieval of digital data J. F. Heanue;M. C. Bashaw;L. Hesselink
  6. Sci. Am. v.275 no.11 Holographic memories D. Psaltis;F. Mok
  7. Opt. Eng. v.34 no.8 Volume holographic memory systems: techniques and architectures J. H. Hong;I. McMichael;T. Y. Chang;W. Christian;E. G. Paek
  8. Optics and Quantum Electronics v.32 no.3 Holographic read-only memory G. Zhou;D. Psaltis;F. Mok
  9. Appl. Opt. v.35 no.14 High-density recording in photopolymer-based holographic three-dimensional disks A. Pu;D. Psaltis
  10. Opt. Eng. v.39 no.11 Holographic data storage by combined use of rotational, angular, and spatial multiplexing J.-S. Jang;D.-H. Shin;Y.-S. Park
  11. Optics in Computing Effects of storing defocused Fourier plane holograms in three-dimensional holographic disk memories J.-S. Jang;D.-H. Shin;J. Kim;H.-S. Lee
  12. Appl. Opt. v.9 Use of a random phase mask for the recording of Fourier transform holograms of data masks C. B. Burkhardt
  13. Opt. Lett. v.21 no.20 Influence of phase masks on cross talk in holographic memory J. Hong;I. McMichael;J. Ma
  14. Appl. Opt. v.37 no.14 Experimental study of the effects of a six-level phase mask on a digital holographic storage system M. Bernal;G. W. Burr;H. H. Coufal;J. A. Hoffnagle;C. M. Jefferson;R. M. Macfarlane;R. M. Shelby;M. Quintanilla
  15. Appl. Opt. v.38 no.26 Improving holographic data storage by use of an optimized phase masks J. Yang;L. M. Bernardo;Y.-S. Bae
  16. Optical Waves in Crystals A. Yariv;P. Yeh
  17. Optics of Liquid Crystal Displays P. Yeh;C. Gu
  18. Opt. Eng. v.35 no.10 Exposure schedule for multiplexing holograms in photopolymer films A. Pu;K. Curtis;D. Psaltis
  19. Appl. Opt. v.37 no.23 Balancing interpixel cross talk and detector noise to optimize areal density in holographic storage systems M. Bernal;G. W. Burr;H. Coufal;M. Quintanilla
  20. Opt. Lett. v.20 no.7 Optical image encryption based on input plane and Fourier plane random encoding P. Refregier;B. Javidi
  21. Opt. Eng. v.39 no.9 Optical implementation of the generalized Hough transform by use of multiplexed holograms D.-H. Shin;J.-S. Jang
  22. Opt. Lett. v.1 no.13 Method for holographic storage using peristrophic multiplexing K. Curtis;A. Pu;D. Psaltis