• Title/Summary/Keyword: holographic data storage

Search Result 125, Processing Time 0.029 seconds

2/3 Modulation Code and Its Vterbi Decoder for 4-level Holographic Data Storage (4-레벨 홀로그래픽 저장장치를 위한 2/3 변조부호와 비터비 검출기)

  • Kim, Gukhui;Lee, Jaejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.10
    • /
    • pp.827-832
    • /
    • 2013
  • Holographic data storage system is affected by two dimensional intersymbol interference and inter-page interference. Especially, for multi-level holographic data storage system, since one pixel contains more than 1 bit, the system is more vulnerable to the error. In this paper, we propose a 2/3 modulation code for 4-level holographic data storage system. The proposed modulation code with error correcting capability could be compensated these interferences. Also, in this paper, we proposed a Viterbi decoder for 2/3 modulation code. The proposed Viterbi decoder eliminates unnecessary calculation. As a result, proposed 2/3 modulation code and Viterbi decoder has shown better performance than conventional one.

Two Dimensional Inter-symbol Interference Compensation for Holographic Data Storage (홀로그래픽 데이터 저장 장치를 위한 2차원 인접 심볼간 간섭 보상)

  • Jeong, Seongkwon;Lee, Jaejin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.10-14
    • /
    • 2015
  • In holographic data storage systems, data is recorded and read by page on a volume of storage medium, and it can increase transmission rate and storage capacity because of two-dimensional page-oriented data processing by charge-coupled devices. However, HDS suffers two-dimensional intersymbol interference unlike conventional data storages. In this paper, we propose a preprocessing method of decreasing ISI before read data in HDS pass to detector. This method has some advantage when we collaborate with the preprocessing for reducing misalignment error and modulation code.

Hardware Channel Decoder for Holographic WORM Storage (홀로그래픽 WORM의 하드웨어 채널 디코더)

  • Hwang, Eui-Seok;Yoon, Pil-Sang;Kim, Hak-Sun;Park, Joo-Youn
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.155-160
    • /
    • 2005
  • In this paper, the channel decoder promising reliable data retrieving in noisy holographic channel has been developed for holographic WORM(write once read many) system. It covers various DSP(digital signal processing) blocks, such as align mark detector, adaptive channel equalizer, modulation decoder and ECC(error correction code) decoder. The specific schemes of DSP are designed to reduce the effect of noises in holographic WORM(H-WORM) system, particularly in prototype of DAEWOO electronics(DEPROTO). For real time data retrieving, the channel decoder is redesigned for FPGA(field programmable gate array) based hardware, where DSP blocks calculate in parallel sense with memory buffers between blocks and controllers for driving peripherals of FPGA. As an input source of the experiments, MPEG2 TS(transport stream) data was used and recorded to DEPROTO system. During retrieving, the CCD(charge coupled device), capturing device of DEPROTO, detects retrieved images and transmits signals of them to the FPGA of hardware channel decoder. Finally, the output data stream of the channel decoder was transferred to the MPEG decoding board for monitoring video signals. The experimental results showed the error corrected BER(bit error rate) of less than $10^{-9}$, from the raw BER of DEPROTO, about $10^{-3}$. With the developed hardware channel decoder, the real-time video demonstration was possible during the experiments. The operating clock of the FPGA was 60 MHz, of which speed was capable of decoding up to 120 mega channel bits per sec.

  • PDF

Performance Evaluation of DC-Suppression GS Coding for the Holographic Data Storage Using Integer Programming Models (정수계획법 모형을 이용한 홀로그래픽 저장장치의 DC-억압 GS코딩의 성능평가)

  • Park, Taehyung;Lee, Jaejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.8
    • /
    • pp.650-655
    • /
    • 2013
  • For the DC-free encoding of source data, the Guided Scrambling (GS) technique is widely used as multi-mode coding in the optical data storage system. For DC-suppression GS coding in the holographic data storage system, the conservative array and balanced coding criteria are proposed. In this paper, equivalent integer programming models are developed to determine the optimal control bits for the minimum digital sum value (MDSV), conservative array, and balanced coding criteria. Using the proposed integer programming models, we compare the performance of GS encoding for the various combination of control bit/array sizes and scrambling polynomials.

Data extraction from distorted image in holographic data storage (홀로그래픽 데이터 저장 장치에서 왜곡된 이미지로부터의 데이터 추출)

  • 전승준;양병춘;이병호
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.60-61
    • /
    • 2000
  • 홀로그래픽 데이터 저장 장치(holographic data storage)는 1960년대에 이미 아이디어가 출현하였고, 1990년대에 들어서 SLM(spatial light modulator)과 CCD(charge coupled device) 등 관련 기술의 발달과 함께 향후 늘어날 대용량 저장 장치 시장에 대한 전망 등에 힘입어 주목받기 시작하였다. 홀로그래픽 데이터 저장 장치의 중요한 장점은 대용량의 정보를 고속으로 처리할 수 있고, 특히 페이지 단위로는 병렬 접근이 가능하다는 것인데, 이를 위해서 반드시 해결되어야 할 것이 픽셀 매치(pixel-match)이다. (중략)

  • PDF

Adaptive Threshold Detection Using Expectation-Maximization Algorithm for Multi-Level Holographic Data Storage (멀티레벨 홀로그래픽 저장장치를 위한 적응 EM 알고리즘)

  • Kim, Jinyoung;Lee, Jaejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.10
    • /
    • pp.809-814
    • /
    • 2012
  • We propose an adaptive threshold detector algorithm for multi-level holographic data storage based on the expectation-maximization (EM) method. In this paper, the signal intensities that are passed through the four-level holographic channel are modeled as a four Gaussian mixture with unknown DC offsets and the threshold levels are estimated based on the maximum likelihood criterion. We compare the bit error rate (BER) performance of the proposed algorithm with the non-adaptive threshold detection algorithm for various levels of DC offset and misalignments. Our proposed algorithm shows consistently acceptable performance when the DC offset variance is fixed or the misalignments are lower than 20%. When the DC offset varies with each page, the BER of the proposed method is acceptable when the misalignments are lower than 10% and DC offset variance is 0.001.

Performance Analysis of Holographic Data Storage Depending on the Number of Levels Per Pixel of the Code Rate 1/2 Modulation Codes (부호율 1/2인 변조부호의 픽셀당 레벨 수에 따른 홀로그래픽 데이터 저장장치 성능 분석)

  • Jeong, Seongkwon;Lee, Jaejin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.16-20
    • /
    • 2015
  • We propose three multi-level modulation codes of the code rate 1/2 for holographic data storage considered as a promising candidate for next generation storage systems. Since a pixel with multi-levels can represent more than 1 bit, it is possible to increase the storage capacity and have many codewords. Thus, we can choose a code that the minimum distance is as far as possible. When we compare the codes with the code rate 1/2, the performance of the code with small number of levels is better than that of large number of levels.

1 Bit/Pixel Modulation Codes for Multi-Level Holographic Data Storage System (멀티레벨 홀로그래픽 데이터 저장장치를 위한 1비트/픽셀 변조부호)

  • Jeong, Seongkwon;Lee, Jaejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1667-1671
    • /
    • 2015
  • Multi-level holographic data storage is a candidate for the next generation data storage system, since it can store more than one bit per pixel. It is possible to increase the number of codewords if the number of levels is increased, and the code with an appropriate selection of codewords can also increase the minimum distance. In this paper, we propose three multi-level modulation codes of the code rate 1 bit/pixel and compare the performance according to the minimum distance. The result shows that the code with small number of levels is better than that of large number of levels because it is hard to detect threshold value.

The exposure-time schedule for uniform diffraction efficiency in angle/fractal multiplexing of holographic data storage (홀로그래픽 저장장치의 각/프랙탈 다중화 방식에서 균일한 회절 효율을 위한 기록 시간 분배)

  • Lee, Jae-Sung;Choi, Jin-Young;Yang, Hyun-Seok;Park, Young-Pil;Park, No-Chul
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.139-144
    • /
    • 2005
  • Because of the photorefractive recording dynamics, each newly recorded hologram partially erases all previously stored image. Thus achieving the desired diffraction efficiency profile for the entire sequence after all images have been recorded requires exposure time schedule. The often cited classical exposure-schedule model predicts a rising-exponential build-up and an exponential decay in An with an exposure time. However because we cannot directly measure the An, it's difficult to establish the relation of both. In this paper, we deduce the relation of diffraction efficiency and exposure time from experiment data and suggest an algorithm to make time schedule profile in angle/fractal multiplexing of holographic data storage. After that, we present simulated result with equal hologram diffraction efficiency for a sequence of 250 holograms recorded by angle/fractal multiplexing.

  • PDF

Trellis Encoding of 6/8 Balanced Code for Holographic Data Storage Systems (홀로그래픽 저장장치를 위한 2차원 6/8 균형부호의 트렐리스 인코딩)

  • Kim, Byungsun;Lee, Jaejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.10
    • /
    • pp.569-573
    • /
    • 2014
  • Holographic data storage is a strong contender to become the next-generation data storage method. Its major weaknesses are two-dimensional intersymbol interference between neighboring pixels and interpage interference caused by storing multiple pages in a single volume of hologram. In this paper, we present a trellis encoding scheme of 6/8 balanced modulation code, to address the two weaknesses. The proposed modulation coding scheme captures on characteristics of the balanced code: the scheme relaxes IPI and enables error correction by exploiting the trellis structure. The proposed method showed improved SNR over the conventional 6/8 modulation code.