DOI QR코드

DOI QR Code

Performance Analysis of Holographic Data Storage Depending on the Number of Levels Per Pixel of the Code Rate 1/2 Modulation Codes

부호율 1/2인 변조부호의 픽셀당 레벨 수에 따른 홀로그래픽 데이터 저장장치 성능 분석

  • Jeong, Seongkwon (School of Electronics Engineering, Soongsil University) ;
  • Lee, Jaejin (School of Electronics Engineering, Soongsil University)
  • 정성권 (숭실대학교 전자정보공학부) ;
  • 이재진 (숭실대학교 전자정보공학부)
  • Received : 2015.09.04
  • Accepted : 2015.09.25
  • Published : 2015.10.25

Abstract

We propose three multi-level modulation codes of the code rate 1/2 for holographic data storage considered as a promising candidate for next generation storage systems. Since a pixel with multi-levels can represent more than 1 bit, it is possible to increase the storage capacity and have many codewords. Thus, we can choose a code that the minimum distance is as far as possible. When we compare the codes with the code rate 1/2, the performance of the code with small number of levels is better than that of large number of levels.

본 논문에서는 차세대 저장장치로 주목받고 있는 멀티레벨 홀로그래픽 데이터 저장장치에서 여러 가지 레벨의 변조부호를 제안하고 이들의 성능을 알아본다. 멀티레벨 변조부호는 한 픽셀에 1비트 이상 저장이 가능하기 때문에 저장용량을 증가시킬 수 있으며, 동일한 픽셀 개수에서 더 많은 코드워드의 표현이 가능하다. 따라서 코드워드간 최소거리가 큰 변조부호를 만들 수 있으며 이런 성질은 오류정정 능력을 가지는 변조부호를 구성할 수 있다. 부호율을 1/2로 고정하고 제안된 변조부호들의 성능을 조사한 결과, 레벨 수가 커서 최소거리가 큰 변조부호의 성능보다 낮은 레벨이기 때문에 최소거리가 작은 변조부호가 더 좋은 성능을 보였다.

Keywords

References

  1. L. Hesselink, S.S. Orlov, and M.C. Bashaw, "Holographic data storage systems," Proc. IEEE, Vol. 92, no. 8, pp. 1231-1280, August 2004. https://doi.org/10.1109/JPROC.2004.831212
  2. S. G. Srinivasa, O. Momtahan, A. Karbaschi, S. W. McLaughlin, A. Adibi, and F. Fekri, "M-ary, binary, and space-volume multiplexing trade-offs for holographic channels," Proc. IEEE Globecom 2006, pp. 1-5, San Francisco, USA, November 2006.
  3. U. Wachsmann, R. F. H. Fischer, and J.B. Huber, "Multilevel Codes: Theoretical Concepts and Practical Design Rules," IEEE. Trans. Inform. Theory, Vol.45, pp. 1361-1391, July 1999. https://doi.org/10.1109/18.771140
  4. J. Kim, J. Lee, T. Park and S. Im, "Expectation-maximization based adaptive threshold detection algorithm for multi-level holographic data storage," Jpn. J. Appl. Phys., Vol.50, no. 9, pp. 09MB01, September 2011.
  5. K. Park, B. Kim, and J. Lee, "A 6/9 Four-Ary Modulation Code for Four-Level Holographic Data Storage," Jpn. J. Appl. Phys., Vol. 52, no. 9, pp. 09LE05, September 2013 https://doi.org/10.7567/JJAP.52.09LE05
  6. S. Kim and J. Lee, "A Simple 2/3 Modulation Code for Multi-Level Holographic Data Storage," Jpn. J. Appl. Phys., Vol. 52, no. 9, pp. 09LE04, September 2013 https://doi.org/10.7567/JJAP.52.09LE04
  7. G. Kim and J. Lee, "2/3 Modulation Code and Its Vterbi Decoder for 4-level Holographic Data Storage," J. KICS, Vol. 38A, no. 10, pp. 827-832, October 2013 https://doi.org/10.7840/kics.2013.38A.10.827
  8. J. Kim, Y. Moon, and J. Lee, "Iterative Decoding between Two-Dimensional Soft Output Viterbi Algorithm and Error Correcting Modulation Code for Holographic Data Storage," Jpn. J. Appl. Phys., Vol. 50, no. 9, pp. 09MB02, September 2011. https://doi.org/10.7567/JJAP.50.09MB02
  9. D. Park and J. Lee, "k/(k+1) Tone-Controllable Codes for Holographic Data Storage," Jpn. J. Appl. Phys., Vol. 50, no. 9, pp. 09ME12, September 2011. https://doi.org/10.7567/JJAP.50.09ME12
  10. M. Keskinoz and B. V. K. V. Kumar, "Efficient modeling of volume holographic storage channels (VHSC)," Proc. SPIE, Vol. 4090, no. 1, pp. 205-210, January 2000.
  11. D. E. Pansatiankul and A. A. Sawchuk, "Multi-dimensional modulation codes and error correction for page-oriented optical data storage," Proc. SPIE, Vol. 4342, pp. 393-400, 2002.
  12. G. Yang, J. Kim, and J. Lee, "Mis-alignment channel performance of error correcting 4/6 modulation codes for holographic data storage," J. KICS, vol. 35, no. 12, pp. 971-976, December 2010.