• Title/Summary/Keyword: hollow-fiber membrane

Search Result 426, Processing Time 0.026 seconds

Separation and Purification of Bio Gas by Hollow Fiber Gas Separation Membrane Module (중공사형 기체분리막 모듈을 이용한 바이오가스의 분리 및 정제)

  • Koh, Hyung-Chul;Ha, Seong-Yong;Woo, Seung-Moon;Nam, Sang-Yong;Lee, Byung-Seong;Lee, Chung-Seop;Choi, Whee-Moon
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.177-192
    • /
    • 2011
  • Hollow fiber membrane using CTA polymers were prepared by the phase separation method for the separation and purification of biogas and the hollow fiber gas separation membrane modules with the effective surface area of 0.17 $m^2$ were prepared. The pure gas permeation properties of membrane modules for methane, oxygen and carbon dioxide were measured. The permeance of $CO_2$ and $CH_4$were 0.46 GPU and 18.52 GPU, respectively, therefore, the high $CO_2$/$CH_4$ selectivity of 40.4 was obtained. The separation and purification test for 4 different simulated mixed gases were carried out after the pure gas test and the gas concentration and flux of the permeate at the various stage-cut were measured from the 1 stage, 2 stage, and 3 stage cascade of membrane modules. In the 1 stage test, the concentration of $CH_4$ increased as the increase of the stage-cut, while the $CH_4$ recovery efficiency ratio decreased. In the 2 stage test, the $CH_4$ recovery efficiency ratio increased compared to the 1 stage. The 3 stage test was employed to reduce the loss of $CH_4$ in biogas and the result showed less than 5% of $CH_4$ recovery loss.

Structural Optimization of Gas-to-gas Membrane Humidifier for Fuel Cell Vehicle (수송용 연료전지 시스템 적용을 위한 기체-기체 막가습기 구조 최적화)

  • Lee, Moo-Seok;Kim, Kyoung-Ju;Shin, Yong-Cheol;Kim, Dong-Hyun;Seo, Sang-Hoon;Kim, Hyun-Yoo
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.2
    • /
    • pp.111-116
    • /
    • 2010
  • In this study, the structural analysis was performed to optimize the membrane humidifier with hollow fiber membrane for polymer electrolyte membrane fuel cell system. The main design factors were considered by evaluating the humidifying performance according to various structural parameters such as packing density and length. The effects of operation conditions of membrane humidifier were also elucidated experimentally. Results imply that there are optimum points for the packing density and length of humidifier. It was also found that among operation conditions, relative humidity of wet exhaust gas and temperature of dry inlet gas have major effects on the humidifying performance.

Design and Filtration Performance of Polysulfone Hollow Fiber Membrane Hemofilter (폴리설폰 중공사막 혈액여과기의 설계 및 여과성능)

  • 김재진;박진용
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.227-234
    • /
    • 1993
  • Hemofilter was optimally designed and manufactured using polysulfone hollow fiber mem- brane with surface area of 0.6mE Molecular weight cut-off of the hemofilter was measured with polyethylene glycol and dextran aqueous solutions of various molecular weights and it was ranged from 9,500 to 38,900. Ultrafiltration rates were measured with pure water in a static system and flowing system. The clearance of urea, creatinlne, and vitamine BIB were measured using aqueous solutions.

  • PDF

Microporous Bellow Fiber Membrane Prepared from High Density Polyethylene/Ultra High Molecular Weight Polyethylene Blend (고밀도 폴리에틸렌/초고분자량 폴리에틸렌 블렌드로 제조한 미세다공성 중공사막)

  • 남주영;최승은;이광희;장문석;김진호;임순호
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.307-312
    • /
    • 2003
  • Hollow fiber was prepared from the blend of a high density polyethylene (HDPE)/ultra high molecular weight polyethylene (UHMWPE). The changes in the morphology and mechanical property of the hollow fiber were investigated. The commercial product (Sterapore), having a high water permeability, was analyzed with viscosity measurement and FT-IR. The molecular weight of Sterapore was very high and its surface was coated with a vinyl alcohol/vinyl acetate copolymer. The content of UHMWPE in the HDPE/UHMWPE blend was limited below 10 wt%. In order to improve the dispersion of UHMWPE, a mineral oil should be introduced in the blend. The morphology and mechanical property of the hollow fiber of HDPE/UHMWPE blend were similar to those of the commercial product.

Progress of Nanofiltration Hollow Fiber Membrane (NF용 중공사 분리막의 발전)

  • Jang, Hanna;Kim, Seongjoong;Lee, Yongtaek;Lee, Kew-Ho
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.456-470
    • /
    • 2013
  • Hollow-fiber membranes, is one of the new technologies that is growing rapidly in the past few decades. In addition, separation membranes using polymer materials, have attracted attentions in various fields including gas separation, fuel cells, water treatment, wastewater treatment, and organic separation. Nanofiltration (NF) membranes having the separation characteristics in the intermediate range between ultrafiltration and reverse osmosis (RO) membranes for liquid separation, with relatively low investment cost and operating pressure lower than that of RO membranes, have high permeance and rejection performance of multivalent ions as well as organic compounds of molecular weight between $200{\sim}1000gmol^{-1}$. In this paper, we would like to review the research trends on the various structure control and characterization of NF hollow fiber membranes with respect to materials and the methods of preparation (phase inversion method and interfacial polymerization method). Currently, most of NF membranes have been manufactured by plate and frame types or spiral wound types. But hollow fiber types have delayed in commercial products, because of the weak strength when to produce on the basis of the existing materials, therefore the development of new materials or improvement of existing materials will be needed. If improving manufacturing technology is available, hollow fiber types will replace spiral wound types and gradually show a higher market share.

Solvent Resistance and Gas Permeation Property of PEI-PDMS Hollow Fiber Composite Membrane for Separation and Recovery of VOCs (VOCs의 분리 및 회수를 위한 PEI-PDMS 중공사 복합막의 내용매성 및 기체 투과 특성)

  • Kim, Se-Jong;Lee, Chung-Seop;Koh, Hyung-Chul;Ha, Seong-Yong;Nam, Sang-Yong;Rhim, Ji-Won;Choi, Whee-Moon
    • Membrane Journal
    • /
    • v.22 no.1
    • /
    • pp.54-61
    • /
    • 2012
  • To separate and recover of VOCs, supporting membranes using PEI were prepared by phase separation method and it was coated with PDMS to prepare PEI-PDMS hollow composite membrane. To investigate characteristic of prepared membrane, pure gas permeability was measured using oxygen and nitrogen, the stage cut and permeance property with feed concentration were evaluated using xylene, ethyl benzene, toluene and cyclohexane. Also, to check solvent resistance on VOCs, stress-strain property of membrane with immersion time in solvent were measured by DMA. The permeance value of $O_2$ and $N_2$ showed 63 GPU and 30 GPU respectively. Permeated VOCs concentration was decreased with increasing stage cut. But, conversely, recovery efficiency that was increased with increasing stage cut. As a result of DMA test, the stress and strain were 11.93 MPa and 13.52%, respectively.

Effect of post-treatment routes on the performance of PVDF-TEOS hollow fiber membranes

  • Shadia R. Tewfik;Mohamed H. Sorour;Hayam F. Shaalan;Heba A. Hani;Abdelghani G. Abulnour;Marwa M. El Sayed;Yomna O. Mostafa;Mahmoud A. Eltoukhy
    • Membrane and Water Treatment
    • /
    • v.14 no.2
    • /
    • pp.85-93
    • /
    • 2023
  • Membrane separation is widely used for several applications such as water treatment, membrane reactors and climate change. Cross-linked organic-inorganic hybrid polyvinylidene fluoride (PVDF) / Tetraethyl orthosilicate (TEOS) was adopted for the preparation of optimized hollow membrane (HFM) for membrane distillation or other low pressure separators for mechanical properties and permeability under varying pretreatment schemes. HFMs were prepared on semi-pilot membrane fabrication system. Novel adopted post-treatment schemes involved soaking in glycerol, magnesium sulphate (MgSO4), sodium hypochlorite (NaOCl), and isopropanol for different durations. All fibers were characterized for morphology using a scanning electron microscope (SEM), surface roughness using atomic force microscope (AFM), elemental composition by examining Energy Dispersive Spectroscopy (EDS), water contact angle (CA°) and porosity. The performance of the fibers was evaluated for pure water permeation flux (PWF). Post-treatment with MgSO4 gave the highest both tensile modulus and flux. Assessment of properties and performance revealed comparable results with other organic-inorganic separators, HF or flat. In spite of few reported data on post treatment using MgSO4 in presence of TEOS, this proves the potential of low cost treatment without negative impact on other membrane properties. The flux is also comparable with hypochlorite which manifests substantial precaution requirements in actual industrial use.The relatively high values of flux/bar for sample treated with TEOS, post treated with MgSO4 and hypochlorite are 88 and 82 LMH/bar respectively.

Transmembrane Pressures with Respect to Backwashing and Sinusoidal Flux Continuous Operation Modes for the Submerged Hollow Fiber Membrane in the Activated Sludge Solution (활성슬러지 수용액 내 침지식 중공사막의 역세척 및 사인파형 연속투과 운전방식에 따른 막간차압)

  • Jeong, Doin;Jung, Seung Hee;Lee, Sohl;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.524-529
    • /
    • 2015
  • In this study transmembrane pressure (TMP) was measured with respect to operational time by applying the sinusoidal flux continuous operation (SFCO) for the hollow fiber membrane. The hollow fiber module which has $100cm^2$ of effective area and $0.45{\mu}m$ nominal pore size was submerged in the activated sludge solution of MLSS 5,000 mg/L. The critical permeate flux was measured as $26.6L/m^2{\cdot}hr$ by the method of continuous flux step change. TMPs of the filtration/relaxation (FR), FR with backwashing (FR/BW) and SFCO modes were measured. The SFCO mode was more effective than FR and FR/BW modes below the critical permeate flux such as 15, 20 and $25L/m^2{\cdot}hr$. However, the FR/BW was confirmed as more effectively fouling controlled mode than SFCO mode above the critical permeate flux.

MEMBRANE-BASED GAS AND VAPOR SEPARATIONS

  • Wijmans, Hans
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.3-6
    • /
    • 2004
  • Industrial gas separation by membranes began in 1980 with the introduction of hollow-fiber polysulfone membrane systems by Permea, at that time a division of Monsanto. This first application was the recovery of hydrogen from ammonia reactor purge gas and was soon followed by the generation of nitrogen from air. Today, membrane gas separation ranks second behind cryogenic distillation in terms of nitrogen production, and this application has drawn the industrial gas companies into the membrane field.(omitted)

  • PDF

Mathematical modeling of humidification process by means of hollow fiber membrane contactor

  • Marjani, Azam;Baghdadi, Ali;Ghadiri, Mehdi
    • Membrane and Water Treatment
    • /
    • v.7 no.4
    • /
    • pp.297-311
    • /
    • 2016
  • Modeling and simulation of air humidification by hollow fiber membrane contactors are investigated in the current study. A computational fluid dynamic model was developed by solving the k-epsilon turbulence 2D Navier-Stokes equations as well as mass conservation equations for steady-state conditions in membrane contactors. Finite element method is used for the study of the air humidification under different operating conditions, with a focus on the humidity density, total mass transfer flux and velocity field. There has been good agreement between simulation results and experimental data obtained from literature. It is found that the enhancement of air stream decreases the outlet humidity from 0.392 to 0.340 (module 1) and from 0.467 to 0.337 (module 2). The results also indicated that there has been an increase in air velocity in the narrow space of shell side compared with air velocity wide space of shell side. Also, irregular arrangement has lower dead zones than regular arrangement which leads to higher water flux.