Browse > Article
http://dx.doi.org/10.12989/mwt.2016.7.4.297

Mathematical modeling of humidification process by means of hollow fiber membrane contactor  

Marjani, Azam (Department of Chemistry, Arak Branch, Islamic Azad University)
Baghdadi, Ali (Department of Chemistry, Arak Branch, Islamic Azad University)
Ghadiri, Mehdi (Young Researchers and Elite Club, South Tehran Branch, Islamic Azad University)
Publication Information
Membrane and Water Treatment / v.7, no.4, 2016 , pp. 297-311 More about this Journal
Abstract
Modeling and simulation of air humidification by hollow fiber membrane contactors are investigated in the current study. A computational fluid dynamic model was developed by solving the k-epsilon turbulence 2D Navier-Stokes equations as well as mass conservation equations for steady-state conditions in membrane contactors. Finite element method is used for the study of the air humidification under different operating conditions, with a focus on the humidity density, total mass transfer flux and velocity field. There has been good agreement between simulation results and experimental data obtained from literature. It is found that the enhancement of air stream decreases the outlet humidity from 0.392 to 0.340 (module 1) and from 0.467 to 0.337 (module 2). The results also indicated that there has been an increase in air velocity in the narrow space of shell side compared with air velocity wide space of shell side. Also, irregular arrangement has lower dead zones than regular arrangement which leads to higher water flux.
Keywords
membrane processes; simulation; mass transfer; humidification; cross flow;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Barati, F., Ghadiri, M., Ghasemi, R. and Nobari, H.M. (2014), "CFD simulation and modeling ofmembraneassisted separation of organic compounds from wastewater", Chem. Eng. Technol., 37(1), 81-86.   DOI
2 Bergero, S. and Chiari, A. (2001), "Experimental and theoretical analysis of air humidification/humidification processes using hydrophobic capillary contactors", Appl. Therm. Eng., 21(11), 1119-1135.   DOI
3 Bergero, S. and Chiari, A. (2010), "Performance analysis of a liquid desiccant and membrane contactor hybrid air-conditioning system", Energ. Buildings, 42(11), 1976-1986.   DOI
4 Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (2002), Transport Phenomena, John Wiley & Sons, New York, NY, USA.
5 Chao, C.-H. and Jen, T.-C. (2013), "A new humidification and heat control method of cathode air for a PEM fuel cell stack", Int. J. Heat Mass Tran., 58(1-2), 117-124.   DOI
6 Daraei, A., Aghasafari, P., Ghadiri, M. and Marjani, A. (2014), "Modeling and transport analysis of silver extraction in porous membrane extractors by computational methods", Trans. Indian Inst. Met., 67(2), 223-227.   DOI
7 Du, J.R., Liu, L., Chakma, A. and Feng, X. (2010), "Using poly(N,N-dimethylaminoethyl methacrylate)/ polyacrylonitrile composite membranes for gas dehydration and humidification", Chem. Eng Sci., 65(16), 4672-4681.   DOI
8 Fadaei, F., Shirazian, S. and Ashrafizadeh, S.N. (2011), "Mass transfer modeling of ion transport through nanoporous media", Desalination, 281, 325-333.   DOI
9 Fadaei, F., Shirazian, S. and Ashrafizadeh, S.N. (2011), "Mass transfer simulation of solvent extraction in hollow-fiber membrane contactors", Desalination, 275(1-3), 126-132.   DOI
10 Fadaei, F., Hoshyargar, V., Shirazian, S. and Ashrafizadeh, S.N. (2012), "Mass transfer simulation of ion separation by nanofiltration considering electrical and dielectrical effects", Desalination, 284, 316-323.   DOI
11 Fasihi, M., Shirazian, S., Marjani, A. and Rezakazemi, M. (2012), "Computational fluid dynamics simulation of transport phenomena in ceramic membranes for $SO_2$ separation", Math. Comput. Model., 56(11-12), 278-286.   DOI
12 Ghadiri, M. and Ashrafizadeh, S.N. (2014), "Mass transfer in molybdenum extraction from aqueous solutions using nanoporous membranes", Chem. Eng. Technol., 37(4), 597-604.   DOI
13 Ghadiri, M. and Shirazian, S. (2013), "Computational simulation of mass transfer in extraction of alkali metals by means of nanoporous membrane extractors", Chem. Eng. Proces: Process Intensifi., 69, 57-62.   DOI
14 Ghadiri, M., Shirazian, S. and Ashrafizadeh, S.N. (2012), "Mass transfer simulation of gold extraction in membrane Extractors", Chem. Eng. Technol., 35(12), 2177-2182.   DOI
15 Ghadiri, M., Fakhri, S. and Shirazian, S. (2013a), "Modeling and CFD simulation of water desalination using nanoporous membrane contactors", Ind. Eng. Chem. Res., 52(9), 3490-3498.   DOI
16 Ghadiri, M., Ghasemi Darehnaei, M., Sabbaghian, S. and Shirazian, S. (2013b), "Computational simulation for transport of priority organic pollutants through nanoporous membranes", Chem. Eng. Technol., 36(3), 507-512.   DOI
17 Ghadiri, M., Parvini, M. and Darehnaei, M.G. (2014c), "Simulation of zinc extraction from aqueous solutions using polymeric hollow-fibers", Poly. Eng. Sci., 54(10), 2222-2227.   DOI
18 Ghadiri, M., Marjani, A. and Shirazian, S. (2013c), "Mathematical modeling and simulation of CO2 stripping from monoethanolamine solution using nano porous membrane contactors", Int. J. Greenhouse Gas Control, 13, 1-8.   DOI
19 Ghadiri, M., Abkhiz, V., Parvini, M. and Marjani, A. (2014a), "Simulation of membrane distillation for purifying water containing 1,1,1-Trichloroethane", Chem. Eng. Technol., 37(3), 543-550.   DOI
20 Ghadiri, M., Fakhri, S. and Shirazian, S. (2014b), "Modeling of water transport through nanopores of membranes in direct-contact membrane distillation process", Poly. Eng. Sci., 54(3), 660-666.   DOI
21 Ghadiri, M., Asadollahzadeh, M. and Hemmati, A. (2015), "CFD simulation for separation of ion from wastewater in a membrane contactor", J. Water Process Eng., 6, 144-150.   DOI
22 Hemmati, M., Nazari, N., Hemmati, A. and Shirazian, S. (2015), "Phenol removal from wastewater by means of nanoporous membrane contactors", J. Ind. Eng. Chem., 21, 1410-1416.   DOI
23 Huang, S.-M. and Yang, M. (2014), "Heat and mass transfer enhancement in a cross-flow elliptical hollow fiber membrane contactor used for liquid desiccant air dehumidification", J. Membr. Sci., 449, 184-192.   DOI
24 Huang, S.-M., Yang, M., Yang, Y. and Yang, X. (2013), "Fluid flow and heat transfer across an elliptical hollow fiber membrane tube bank for air humidification", Int. J. Therm. Sci., 73, 28-37.   DOI
25 Kneifel, K., Nowak W.A., Hilke, R., Just, R. and Peinemann, K.V. (2006), "Hollow fiber membrane contactor for air humidity control: Modules and membranes", J. Membr. Sci., 276(1-2), 241-251.   DOI
26 Moradi, S., Rajabi, Z., Mahammadi, M., Salimi, M., Homami, S.S., Seydei, M.K. and Shirazian, S. (2013), "3 dimensional hydrodynamic analysis of concentric draft tube airlift reactors with different tube diameters", Math. Comput. Model., 57(5-6), 1184-1189.   DOI
27 Kong, I.M., Choi, J.W., Kim, S.I., Lee, E.S. and Kim, M.S. (2015), "Experimental study on the selfhumidification effect in proton exchange membrane fuel cells containing double gas diffusion backing layer", Appl. Energ., 145, 345-353.   DOI
28 Li, J. and Ito, A. (2008), "Dehumidification and humidification of air by surface-soaked liquid membrane module with triethylene glycol", J. Membr. Sci., 325(2), 1007-1012.   DOI
29 Miramini, S.A., Razavi, S.M.R., Ghadiri, M., Mahdavi, S.Z. and Moradi, S. (2013), "CFD simulation of acetone separation from an aqueous solution using supercritical fluid in a hollow-fiber membrane contactor", Chem. Eng. Proces.: Process Intensifi., 72, 130-136.
30 Nosratinia, F., Ghadiri, M. and Ghahremani, H. (2014), "Mathematical modeling and numerical simulation of ammonia removal from wastewaters using membrane contactors", J. Ind. Eng. Chem., 20(5), 2958-2963.   DOI
31 Paul, S.S., Ormiston, S.J. and Tachie, M.F. (2008), "Experimental and numerical investigation of turbulent cross-flow in a staggered tube bundle", Int. J. Heat Fluid Flow, 29(2), 387-414.   DOI
32 Razavi, S.M.R., Razavi, S.M.J., Miri, T. and Shirazian, S. (2013), "CFD simulation of $CO_2$ capture from gas mixtures in nanoporous membranes by solution of 2-amino-2-methyl-1-propanol and piperazine", Int. J. Greenhouse Gas Control, 15, 142-149.   DOI
33 Rezakazemi, M., Ghafarinazari, A., Shirazian, S. and Khoshsima, A. (2013a), "Numerical modeling and optimization of wastewater treatment using porous polymeric membranes", Poly. Eng. Sci., 53(6), 1272-1278.   DOI
34 Shirazian, S. and Ashrafizadeh, S.N. (2011), "Near-critical extraction of the fermentation products by membrane contactors: A mass transfer simulation", Ind. Eng. Chem. Res., 50(4), 2245-2253.   DOI
35 Rezakazemi, M., Iravaninia, M., Shirazian, S. and Mohammadi, T. (2013b), "Transient computational fluid dynamics modeling of pervaporation separation of aromatic/aliphatic hydrocarbon mixtures using polymer composite membrane", Poly. Eng. Sci., 53(7), 1494-1501.   DOI
36 Roostaiy Ghalehnooiy, M., Marjani, A. and Ghadiri, M. (2015), "Synthesis and characterization of polyurethane/poly(vinylpyridine) composite membranes for desulfurization of gasoline", RSC Advances, 5(116), 95994-96001.   DOI
37 Shirazian, S. and Ashrafizadeh, S.N. (2010), "Mass transfer simulation of caffeine extraction by subcritical $CO_2$ in a hollow-fiber membrane contactor", Solvent Extr. Ion Exc., 28(2), 267-286.   DOI
38 Shirazian, S. and Ashrafizadeh, S.N. (2013), "3D modeling and simulation of mass transfer in vapor transport through porous membranes", Chem. Eng. Technol., 36(1), 177-185.   DOI
39 Shirazian, S., Marjani, A. and Rezakazemi, M. (2012a), "Separation of $CO_2$ by single and mixed aqueous amine solvents in membrane contactors: fluid flow and mass transfer modeling", Eng. Comput., 28(2), 189-198.   DOI
40 Shirazian, S., Pishnamazi, M., Rezakazemi, M., Nouri, A, Jafari, M. and Noroozi, S. (2012b), "Implementation of the finite element method for simulation of mass transfer in membrane contactors", Chem. Eng. Technol., 35(6), 1077-1084.   DOI
41 Tahvildari, K., Zarabpour, A., Ghadiri, M. and Hemmati, A. (2014), "Numerical simulation studies on heat and mass transfer using vacuum membrane distillation", Poly. Eng. Sci., 54(11), 2553-2559.   DOI
42 Zhang, L.-Z. and Li, Z.-X. (2013), "Convective mass transfer and pressure drop correlations for cross-flow structured hollow fiber membrane bundles under low Reynolds numbers but with turbulent flow behaviors", J. Membr. Sci., 434, 65-73.   DOI
43 Wu, Y., Peng, X., Liu, J., Kong, Q., Shi, B. and Tong, M. (2002), "Study on the integrated membrane processes of dehumidification of compressed air and vapor permeation processes", J. Membr. Sci., 196(2), 179-183.   DOI
44 Zhang, L.-Z. (2012), "Coupled heat and mass transfer in an application-scale cross-flow hollow fiber membrane module for air humidification", Int. J. Heat Mass Trans., 55(21-22), 5861-5869.   DOI
45 Zhang, L.-Z. and Huang, S.-M. (2011), "Coupled heat and mass transfer in a counter flow hollow fiber membrane module for air humidification", Int. J. Heat Mass Trans., 54(5-6), 1055-1063.   DOI