• 제목/요약/키워드: hollow-core slabs

검색결과 29건 처리시간 0.025초

고성능 중공슬래브의 휨 실험 (Flexural Tests of High Performance Hollow Core Slabs)

  • 박현석;김인규;조영모;유승룡
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.167-172
    • /
    • 2001
  • Hollow core slabs generally have not been used for a bridge slab or a parking in Korea. In this study, high performance hollow core slabs, which has been the most thick one in domestic are re-designed and examined for practical use. Flexural tests were performed on four 315mm deep hollow core slabs to investigate adaptability for high vehicle live loadings and composite action with topping concrete. The precast slabs were reinforced with 10-l/2 inch dia-strands at the lower of slab and 4-l/2 inch dia-strands at tile upper of slab, and cast with 80mm deep topping concrete. Those tested hollow core slabs showed ductile failure behaviors which were conform to the current Ultimate Strength Design Method for a span of l0m up to the live load of 1, 000 kg/$m^2$.

  • PDF

Experimental and analytical study on prestressed concrete hollow slabs with asymmetric boundary conditions

  • Ma, Haiying;Lai, Minghui;Xia, Ye
    • Structural Engineering and Mechanics
    • /
    • 제81권1호
    • /
    • pp.59-68
    • /
    • 2022
  • Prestressed prefabricated hollow core concrete slabs with spans of 5 m and 10 m are commonly used since last century and still in service due to the advantage of construction convenience and durability. However, the end slabs are regularly subjected to cracks at the top and fail with brittleness due to the asymmetric boundary conditions. To better maintain such widely used type of hollow core slabs, the effect of asymmetric constraint in the end slabs are systematically studied through detailed nonlinear finite element analyses and experimental data. Experimental tests of slabs with four prestressed tendons and seven prestressed tendons with different boundary conditions were conducted. Results observe three failure modes of the slabs: the bending failure mode, shear and torsion failure mode, and transverse failure mode. Detailed nonlinear finite element models are developed to well match the failure modes and to reveal potential damage scenarios with asymmetric boundary conditions. Recommendations regarding ultimate capacity of the slabs with asymmetric boundary conditions are made to ensure a safe and rational design of prestressed concrete hollow slabs for short span bridges.

Analytical and numerical studies on hollow core slabs strengthened with hybrid FRP and overlay techniques

  • Kankeri, Pradeep;Prakash, S. Suriya;Pachalla, Sameer Kumar Sarma
    • Structural Engineering and Mechanics
    • /
    • 제65권5호
    • /
    • pp.535-546
    • /
    • 2018
  • The objective of this study is to understand the behaviour of hollow core slabs strengthened with FRP and hybrid techniques through numerical and analytical studies. Different strengthening techniques considered in this study are (i) External Bonding (EB) of Carbon Fiber Reinforced Polymer (CFRP) laminates, (ii) Near Surface Mounting (NSM) of CFRP laminates, (iii) Bonded Overlay (BO) using concrete layer, and (iv) hybrid strengthening which is a combination of bonded overlay and NSM or EB. In the numerical studies, three-dimensional Finite Element (FE) models of hollow core slabs were developed considering material and geometrical nonlinearities, and a phased nonlinear analysis was carried out. The analytical calculations were carried out using Response-2000 program which is based on Modified Compression Field Theory (MCFT). Both the numerical and analytical models predicted the behaviour in agreement with experimental results. Parametric studies indicated that increase in the bonded overlay thickness increases the peak load capacity without reducing the displacement ductility. The increase in FRP strengthening ratio increased the capacity but reduced the displacement ductility. The hybrid strengthening technique was found to increase the capacity of the hollow core slabs by more than 100% without compromise in ductility when compared to their individual strengthening schemes.

상부강선을 갖는 고성능 중공슬래브의 휨거동 (Flexural Behaviors of High Performance Hollow Core Slabs with Upper Strands)

  • 김인규;박현석;유승룡
    • 콘크리트학회논문집
    • /
    • 제14권2호
    • /
    • pp.156-163
    • /
    • 2002
  • 우리나라에서 교량이나 주차장 슬래브용으로 중공 슬래브를 활용한 예는 거의 없었다. 본 연구는 국내에서 생산중인 중공슬레브의 길이가 가장 큰 고성능 중공슬래브를 재설계하고, 그 적용성을 검토한 것이다. 이를 위해 최대 깊이 315 mm인 고성능 중공슬래브에 대하여 12.7 mm 슬래브 하부강선 10개와 상부강선을 4개를 배근한 중공슬래브 80mm 토핑콘크리트를 타설한 4개의 실험체에 휨실험을 실시하여, 차량 등을 위한 고하중에서의 활용성과 슬래브의 합성작용에 대한 검토를 병행하였다. 이 실험에서의 중공슬래브는 10 m-경간 슬래브에서 설계활하중 1,000 kgf/$m^2$를 고려할 때 강도설계에 적합한 연성적 휨파괴 거동을 보여주었다. 또한 슬래브와 토핑콘크리트의 합성거동을 위하여 사용한 직사각형 전단키와 원형 전단키는 모든 단부에서 순수 휨파괴까지 어떠한 미세 균열도 발생하지 않았으므로, 누 종류의 키는 전단키로 충분한 내력을 발휘한 것으로 판단된다.

Behavior of reinforced lightweight aggregate concrete hollow-core slabs

  • Al-Azzawi, Adel A.;Al-Aziz, Basma M. Abdul
    • Computers and Concrete
    • /
    • 제21권2호
    • /
    • pp.117-126
    • /
    • 2018
  • This research investigate the behavior of reinforced normal and lightweight aggregate concrete hollow core slabs with different core shapes, shear span to effective depth (a/d). The experimental work includes testing seven reinforced concrete slabs under two vertical line loads. The dimensions of slab specimens were (1.1 m) length, (0.6 m) width and (0.12 m) thickness. The maximum reduction in weight due to aggregate type was (19.28%) and due to cross section (square and circular) cores was (17.37 and 13.64%) respectively. The test results showed that the decrease of shear span to effective depth ratio from 2.9 to 1.9 for lightweight aggregate solid slab cause an increase in ultimate load by (29.06%) and increase in the deflection value at ultimate load or the ultimate deflection by (17.79%). The use of lightweight aggregate concrete in casting solid slabs give a reduction in weight by (19.28%) and in the first cracking and ultimate loads by (16.37%) and (5%) respectively for constant (a/d=2.9).The use of lightweight aggregate concrete in casting hollow circular core slabs with constant (a/d=2.9) (reduction in weight 32.92%) decrease the cracking and ultimate loads by (12%) and (5.18%) respectively with respect to the solid slab. These slab specimens were analyzed numerically by using the finite element computer program ANSYS. Good agreements in terms of behavior, cracking load (load at first visible crack) and ultimate load (maximum value of testing load) was obtained between finite element analysis and experimental test results.

Investigation of the behavior of reinforced concrete hollow-core thick slabs

  • Al-Azzawi, Adel A.;Abed, Sadeq A.
    • Computers and Concrete
    • /
    • 제19권5호
    • /
    • pp.567-577
    • /
    • 2017
  • This study presents investigation of the behavior of moderately thick reinforced concrete slabs having hollow cores with different parameters. The experimental part of this investigation includes testing eight specimens of solid and hollow-core slab models having (2.05 m) length, (0.6 m) width and (25 cm) thickness under two monotonic line loads. Load versus deflection was recorded during test at mid span and under load. Numerically, the finite element method is used to study the behavior of these reinforced concrete slabs by using ANSYS computer program. The specimens of slab models are modeled by using (SOLID65) element to represent concrete slabs and (LINK180) element to represent the steel bars as discrete axial members between concrete nodes. The finite element analysis has showed good agreement with the experimental results with difference of (4.71%-8.68%) in ultimate loads. A parametric study have been carried out by using ANSYS program to investigate the effects of concrete compressive strength, size and shape of core, type of applied load and effect of removing top steel reinforcement.

실험을 통한 프리캐스트-프리스트레스트 중공슬래브의 전단강도 (Evaluation of Shear Strength of Precast-prestressed Hollow Core Slabs Based on Experiments)

  • 한상환;문기훈;강동훈;임주혁;김용남
    • 콘크리트학회논문집
    • /
    • 제26권5호
    • /
    • pp.635-642
    • /
    • 2014
  • 일반적인 슬래브대신에 중공슬래브를 사용함으로 콘크리트의 무게를 줄일 수 있으며 비용도 절감시킬 수 있다. 하지만 중공슬래브는 복부에서 콘크리트단면의 감소와 전단철근을 배근할 수 없기 때문에 전단에 대한 검토가 필요하다. 본 연구에서는 프리캐스트-프리스트레스트 중공슬래브를 실험을 기반으로 전단강도 평가를 수행하였다. 전단강도실험은 6개의 실험체를 제작하고 수행하였으며, 전단강도는 현행기준인 EC2, ACI, EN1168, AASHTO로 평가하여 비교분석하였다.

Behavior of reinforced sustainable concrete hollow-core slabs

  • Al-Azzawi, Adel A.;Shallal, Mustafa S.
    • Advances in concrete construction
    • /
    • 제11권4호
    • /
    • pp.271-284
    • /
    • 2021
  • This study aims to trace the response of twelve one-way sustainable concrete hollow-core slabs made by reducing cement content and using replacement of coarse aggregate by plastic aggregate. The trial mixes comprise the 25, 50, 75, and 100% replacement of natural coarse aggregate. The compressive strength of the resulting lightweight concrete with full replacement of coarse aggregate by plastic aggregate was 28 MPa. These slabs are considered to have a reduced dead weight due to using lightweight aggregate and due to reducing cross-section through using voids. The samples are tested under two verticals line loads. Several parameters are varied in this study such as; nature of coarse aggregate (natural or recycled), slab line load location, the shape of the core, core diameter, flexural reinforcement ratio, and thickness of the slab. Strain gauges are used in the present study to measure the strain of steel in each slab. The test samples were fourteen one-way reinforced concrete slabs. The slab's dimensions are (1000 mm), (600 mm), (200 mm), (length, width, and thickness). The change in the shape of the core from circular to square and the use of (100 mm) side length led to reducing the weight by about (46%). The cracking and ultimate strength is reduced by about (5%-6%) respectively. With similar values of deflection. The mode of failure will remain flexural. It is recognized that when the thickness of the slab changed from (200 mm to 175 mm) the result shows a reduction in cracking and ultimate strength by about (6% and 7%) respectively.

3-D finite element modelling of prestressed hollow-core slabs strengthened with near surface mounted CFRP strips

  • Mahmoud, Karam;Anand, Puneet;El-Salakawy, Ehab
    • Computers and Concrete
    • /
    • 제21권6호
    • /
    • pp.607-622
    • /
    • 2018
  • A non-linear finite element model (FEM) was constructed using a three-dimensional software (ATENA-3D) to investigate the effect of strengthening on the behavior of prestressed hollow-core (PHC) slabs with or without openings. The slabs were strengthened using near surface mounted (NSM)-carbon fiber reinforced polymer (CFRP) strips. The constructed model was validated against experimental results that were previously reported by the authors. The validated FEM was then used to conduct an extensive parametric study to examine the influence of prestressing reinforcement ratio, compressive strength of concrete and strengthening reinforcement ratio on the behavior of such slabs. The FEM results showed good agreement with the experimental results where it captured the cracking, yielding, and ultimate loads as well as the mid-span deflection with a reasonable accuracy. Also, an overall enhancement in the structural performance of these slabs was achieved with an increase in prestressing reinforcement ratio, compressive strength of concrete, external reinforcement ratio. The presence of openings with different dimensions along the flexural or shear spans reduced significantly the capacity of the PHC slabs. However, strengthening these slabs with 2 and 4 (64 and $128mm^2$ that represent reinforcement ratios of 0.046 and 0.092%) CFRP strips was successful in restoring the original strength of the slab and enhancing post-cracking stiffness and load carrying capacity.

Genetic algorithm optimization of precast hollow core slabs

  • Sgambi, Luca;Gkoumas, Konstantinos;Bontempi, Franco
    • Computers and Concrete
    • /
    • 제13권3호
    • /
    • pp.389-409
    • /
    • 2014
  • Precast hollow core slabs (HCS) are technically advanced products in the precast concrete industry, widely used in the last years due to their versatility, their multipurpose potential and their low cost. Using three dimensional FEM (Finite Element Method) elements, this study focuses on the stresses induced by the prestressing of steel. In particular the investigation of the spalling crack formation that takes place during prestressing is carried out, since it is important to assure the appropriate necessary margins concerning such stresses. In fact, spalling cracks may spread rapidly towards the web, leading to the detachment of the lower part of the slab. A parametric study takes place, capable of evaluating the influence of the tendon position and of the web width on the spalling stress. Consequently, after an extensive literature review on the topic of soft computing, an optimization of the HCS is performed by means of Genetic Algorithms coupled with 3-D FEM models.