• 제목/요약/키워드: hole formation

검색결과 303건 처리시간 0.025초

총 정전용량을 이용한 마이크로 펀치 시스템의 펀치-다이 얼라인먼트 조절 알고리즘 개발 (The development of punch-die aligning algorithm in micro punch system with using the total capacitance)

  • 최근형;김병희;김헌영;장인배
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.1049-1052
    • /
    • 2002
  • The aligning between the punch and die governs no only the burr formation characteristics but also the life time of the punch and die in the sheet metal blanking process. There are many ways to adjust the two elements in the general punching systems but in the case of micro punch system, the punch size is reduced to a few tenth of micrometer range and the general aligning methods are almost impossible to apply. The image processing is the most widely used method in micro punch aligning, but in order to apply the method, it needs quite a large space for visionary system to approach the punch-die aligning zone. In this paper, the new punch-die aligning method with using the total capacitance between the punch and die hole is proposed. In this method, the tip surface of the punch tool locates at the same plane of the die surface and the capacitance variation between the two elements are measured. When the center of the two elements are coincided, the capacitance is minimized, but when the align Is changed to any direction, the capacitance between the two elements increase. In order to verify the feasibility of this method, the aligning and punching tests was performed.

  • PDF

Development of Simple Solvent Treating Methods to Enhance the Efficiency of Small-Molecule Organic Solar Cells

  • Kim, Jin-Hyun;Heo, Il-Su;Gong, Hye-Jin;Yu, Yeon-Gyu;Yim, Sang-Gyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.276-276
    • /
    • 2012
  • The interface morphology of organic active layers is known to play a crucial role in the performance of organic photovoltaic (OPV) cells. Especially, a controlled nanostructure with a large contact area between electron donor (D) and acceptor (A) layers is necessary to improve the power conversion efficiency (PCE) of the cells since the short exciton diffusion lengths in organic semiconductors limit the charge (hole and electron) separation before excitons recombination. In this work, we developed simple solvent treating methods to fabricate a nanostructured DA interface and applied them to enhance the PCE of ZnPc/C60 based small molecule OPV cells. Interestingly, it was observed that the solvent treatment on the donor layer prior to the deposition of the acceptor layer resulted in a significant decrease in PCE, which was due to an existence of undesirable voids at the DA interface. Instead, the solvent vapor treatment after the DA bilayer formation led to densely packed and well dispersed DA contacts. Consequently, 3-fold enhancement of PCE as compared to the untreated bilayer cell was accomplished.

  • PDF

가스침탄 처리한 AISI 8620 강에서 급냉제가 표면잔류응력에 미치는 영향 (Effect of Quenchant Temperature on the Surface Residual Stress in Gas Carburized AISI 8620 Steel)

  • 장충길;한준희;황농문;김종집;임병수
    • 열처리공학회지
    • /
    • 제2권2호
    • /
    • pp.27-32
    • /
    • 1989
  • The effect of quenchant temperature on the surface residual stress was studied for AISI 8620 steel. Specimens were carburized at $900^{\circ}C$ in all case type furnace using a gas-base atmosphere of methanol cracked and liquefied petroleum gas, and then subjected to single reheat quenchant in oil or salt bath in the temperature range of $60^{\circ}C$ to $300^{\circ}C$. After carburizing and reheat Quenching, residual stress was measured by the hole drilling method. Experimental results showed that the surface residual stress was increased as the quenchant temperature was raised. This is in contrast to the fact that the formation of phase of low transformation strain such as bainite results in lower surface compressive stress. The greater compressive stress observed in specimens Quenched at higher temperature may be attributed to the shifting of the transformation start point farther from the surface, as was reported in other carburizing steels.

  • PDF

Effects of Spiral Arms on the Gaseous Features of Barred Spiral Galaxies

  • 김용휘;김웅태
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.57.1-57.1
    • /
    • 2011
  • Using high-resolution numerical simulations, we investigate the formation of gaseous substructures and mass inflow rates in barred spiral galaxies in the presence of both bar and spiral potentials. The gaseous medium is assumed to be infinitesimally-thin, isothermal, unmagnetized, and non-self-gravitating. To consider various galactic situations, we vary the pattern speed and strength of spiral arms as well as the black hole mass. We find that spiral arms with pattern speed smaller than that of the bar remove angular momentum from the gas outside corotation which transports to the bar region, making the dust lanes strong and live long. When the arm pattern speed is identical to that of the bar, on the other hand, the gas outside corotation gains angular momentum and thus moves outward, without affecting the bar region. Overall gaseous morphologies in simulations match well with observed IR images of barred spiral galaxies such as NGC 1097, when the arms and bar are in phase at the corotation radius. The presence of spiral arms increases the mass inflow rate as well, making it larger than $0.01M_{\odot}/yr$ when MBH is $4{\times}10^7M_{\odot}$, possibly explaining AGN activities in Seyfert galaxies.

  • PDF

Pr2NiO4+δ for Cathode in Protonic Ceramic Fuel Cells

  • An, Hyegsoon;Shin, Dongwook;Ji, Ho-Il
    • 한국세라믹학회지
    • /
    • 제55권4호
    • /
    • pp.358-363
    • /
    • 2018
  • To improve the polarization property of cathodes, which is the main factor limiting the performance of protonic ceramic fuel cells (PCFCs), $K_2NiF_4-type$ $Pr_2NiO_{4+{\delta}}$, which is expected to exhibit a triple conducting property (proton, oxygen ion, and hole conductions) was applied to PCFCs and its properties were investigated. Low-temperature microwave heat-treatment was used to achieve both sufficient interface adhesion between the electrolyte and the cathode layers and suppression of the secondary phase formation due to migration of elements such as barium and cerium. Through this fabrication method, a high performance of $0.82W{\cdot}cm^{-2}$ and low ohmic resistance of $0.06{\Omega}{\cdot}cm^2$ were obtained in an $Ni-BaCe_{0.55}Zr_{0.3}Y_{0.15}O_{3-{\delta}}$ | $BaCe_{0.55}Zr_{0.3}Y_{0.15}O_{3-{\delta}}$ | $Pr_2NiO_{4+{\delta}}$ single cell at $650^{\circ}C$. This result verifies that the $K_2NiF_{4+{\delta}}-type$ cathode shows good chemical compatibility which, in turn, will make it a potent candidate as a PCFC cathode.

Ferromagnetism and p-type Conductivity in Laser-deposited (Zn,Mn)O Thin Films Codoped by Mg and P

  • Kim, Hyo-Jin;Kim, Hyoun-Soo;Kim, Do-Jin;Ihm, Young-Eon;Choo, Woong-Kil;Hwang, Chan-Yong
    • Journal of Magnetics
    • /
    • 제12권4호
    • /
    • pp.144-148
    • /
    • 2007
  • We report on the observation of p-type conductivity and ferromagnetism in diluted magnetic semiconductor $(Zn_{0.97}Mg_{0.01}Mn_{0.02})O:P$ films grown on $SiO_2/Si$ substrates by pulsed laser deposition. The p-type conduction with hole concentration over $10^{18}cm^{-3}$ is obtained by codoping of Mg and P followed by rapid thermal annealing in an $O_2$ atmosphere. Structural and compositional analyses for the p-type $(Zn_{0.97}Mg_{0.01}Mn_{0.02})O:P$ films annealed at $800^{\circ}C$ indicates that highly c-axis oriented homogeneous films were grown without any detectable formation of secondary phases. The films were found to be transparent in the visible range. The magnetic measurements clearly revealed an enhancement of room temperature ferromagnetism by p-type doping.

An Ultrathin Polymer Network through Polyion-Complex by Using Sodium Dioctadecyl Sulfate as Monolayer Template

  • Lee, Burm-Jong;Kim, Hee-Sang;Kim, Seong-Hoon;Son, Eun-Mi;Kim, Dong-Kyoo;Shin, Hoon-Kyu;Kwon, Young-Su
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권4호
    • /
    • pp.575-579
    • /
    • 2002
  • Two-dimensionally cross-linked ultrathin films of poly(maleic acid-alt-methyl vinyl ether) (MA-MVE) and poly(allylamine) (PAA) were produced by using sodium dioctadecyl sulfate (2C18S) as the monolayer template for Langmuir-Blodgett (LB) depositio n. The template molecules were subsequently removed by thermal treatment followed by extraction. The polyion-complexed monolayers of three components, i.e., template 2C18S, co-spread PAA, and subphase MA-MVE, were formed at the air-water interface. Their monolayer properties were studied by the surface pressure-area isotherm. The monolayers were transferred on solid substrates as Y type. The polyion-complexed LB films and the resulting network films were characterized by FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The cross-linking to form a polymer network was achieved by amide or imide formation through heat treatment under a vacuum. SEM observation of the film on a porous fluorocarbon membrane filter (pore diameter 0.1 ㎛) showed covering of the pores by four layers in the polyion complex state. Extraction by chloroform followed by heat treatment produced hole defects in the film.

Enhanced Stability of Organic Photovoltaics by Additional ZnO Layers on Rippled ZnO Electron-collecting Layer using Atomic Layer Deposition

  • Kim, Kwang-Dae;Lim, Dong Chan;Jeong, Myung-Geun;Seo, Hyun Ook;Seo, Bo Yeol;Lee, Joo Yul;Song, Youngsup;Cho, Shinuk;Lim, Jae-Hong;Kim, Young Dok
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권2호
    • /
    • pp.353-356
    • /
    • 2014
  • We fabricated organic photovoltaic (OPV) based on ZnO ripple structure on indium tin oxide as electron-collecting layers and PTB7-F20 as donor polymer. In addition, atomic layer deposition (ALD) was used for preparing additional ZnO layers on rippled ZnO. Addition of 2 nm-thick ALD-ZnO resulted in enhanced initial OPV performance and stability. Based on photoluminescence results, we suggest that ALD-ZnO layers reduced number of surface defect sites on ZnO, which can act as electron-hole recombination center of OPV, and increased resistance of ZnO towards surface defect formation.

Urea-SCR에 적용되는 이유체 노즐의 분무특성에 관한 실험적 연구 (Experimental Study on Spray Characteristics of Twin Fluid Nozzle in Urea-SCR)

  • 박형선;홍정구
    • 한국분무공학회지
    • /
    • 제22권2호
    • /
    • pp.96-102
    • /
    • 2017
  • In order to reduce the NOx, SCR technology is most suitable. In this study, we focused on studying the injector part of urea-SCR system. When stoichiometric 1 mole of urea is injected, 2 moles of $NH_3$ are created. $NH_3$ causes a SCR reaction by reacting with NOx. However, urea is decomposed by the side reaction of coming out HNCO, deposit formation is formed. In this study, it was to design a nozzle that can spray the optimal spray flow rate. Test nozzle used in this experiment is efferverscent type. The result of the experiment, liquid flow rate was confirmed to be that they are dominated by the exit orifice diameter. The area ratio is defined by ratio of the area of exit orifice hole and that of aerorator. The droplet size was measured by varying the area ratios. In addition, it was also confirmed that there is no change of the liquid flow rate and air flow rate to change the aerorator at the same exit orifice. Further, It was confirmed that the droplet size was relatively uniform even though the area ratio was different. Finally, there is little change in the SMD that air flow rate increases in 0.3 or more ALR.

Strained-SiGe Complementary MOSFETs Adopting Different Thicknesses of Silicon Cap Layers for Low Power and High Performance Applications

  • Mheen, Bong-Ki;Song, Young-Joo;Kang, Jin-Young;Hong, Song-Cheol
    • ETRI Journal
    • /
    • 제27권4호
    • /
    • pp.439-445
    • /
    • 2005
  • We introduce a strained-SiGe technology adopting different thicknesses of Si cap layers towards low power and high performance CMOS applications. By simply adopting 3 and 7 nm thick Si-cap layers in n-channel and p-channel MOSFETs, respectively, the transconductances and driving currents of both devices were enhanced by 7 to 37% and 6 to 72%. These improvements seemed responsible for the formation of a lightly doped retrograde high-electron-mobility Si surface channel in nMOSFETs and a compressively strained high-hole-mobility $Si_{0.8}Ge_{0.2}$ buried channel in pMOSFETs. In addition, the nMOSFET exhibited greatly reduced subthreshold swing values (that is, reduced standby power consumption), and the pMOSFET revealed greatly suppressed 1/f noise and gate-leakage levels. Unlike the conventional strained-Si CMOS employing a relatively thick (typically > 2 ${\mu}m$) $Si_xGe_{1-x}$ relaxed buffer layer, the strained-SiGe CMOS with a very thin (20 nm) $Si_{0.8}Ge_{0.2}$ layer in this study showed a negligible self-heating problem. Consequently, the proposed strained-SiGe CMOS design structure should be a good candidate for low power and high performance digital/analog applications.

  • PDF