• Title/Summary/Keyword: histone deacetylase

Search Result 205, Processing Time 0.028 seconds

Antitumor Activity of Histone Deacetylase Inhibitor Trichostatin A in Osteosarcoma Cells

  • Cheng, Dong-Dong;Yang, Qing-Cheng;Zhang, Zhi-Chang;Yang, Cui-Xia;Liu, Yi-Wen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1395-1399
    • /
    • 2012
  • Background: Histone deacetylase (HDAC) inhibitors have been reported to induce cell growth arrest, apoptosis and differentiation of tumor cells. The present study aimed to examine the effects of trichostatin A (TSA), one such inhibitor, on the cell cycle, apoptosis and invasiveness of osteosarcoma cells. Methods: MG-63 cells were treated with TSA at various concentrations. Then, cell growth and apoptosis were determined by 3-(4, 5-dimethyl-2-thiazolyl)-2H-tetrazolium bromide (MTT) and TUNEL assays, respectively; cell cycling was assessed by flow cytometry; invasion assays were performed with the transwell Boyden Chamber system. Results: MTT assays revealed that TSA significantly inhibited the growth of MG-63 cells in a concentration and time dependent manner. TSA treated cells demonstrated morphological changes indicative of apoptosis and TUNEL assays revealed increased apoptosis of MG-63 cells after TSA treatment. Flow cytometry showed that TSA arrested the cell cycle in G1/G2 phase and annexin V positive apoptotic cells increased markedly. In addition, the invasiveness of MG-63 cells was inhibited by TSA in a concentration dependent manner. Conclusion: Our findings demonstrate that TSA inhibits the proliferation, induces apoptosis and inhibits invasiveness of osteosarcoma cells in vitro. HDAC inhibitors may thus have promise to become new therapeutic agents against osteosarcoma.

Histone Deacetylase Inhibitor Trichostatin A Enhances Antitumor Effects of Docetaxel or Erlotinib in A549 Cell Line

  • Zhang, Qun-Cheng;Jiang, Shu-Juan;Zhang, Song;Ma, Xiao-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3471-3476
    • /
    • 2012
  • Background and Objective: Histone deacetylase (HDAC) inhibitors represent a promising class of potential anticancer agents for treatment of human malignancies. In this study, we investigated the effect of trichostatin A (TSA), one such HDAC inhibitor, in combination with docetaxel (TXT), a cytotoxic chemotherapy agent or erlotinib, a novel molecular target therapy drug, on lung cancer A549 cells. Methods: A549 cells were treated with TXT, erlotinib alone or in combination with TSA, respectively. Cell viability, apoptosis, and cell cycle distribution were evaluated using MTT (3- (4, 5-dimethylthiazol-2-yl) -2, 5-diphenyltetrazolium bromide) assay, Hochst33258 staining and flow cytometry. Moreover, immunofluorescent staining and Western blot analysis were employed to examine alterations of ${\alpha}$-tubulin, heat shock protein 90 (hsp90), epidermal growth factor receptor (EGFR), and caspase-3 in response to the different exogenous stimuli. Results: Compared with single-agent treatment, co-treatment of A549 cells with TSA/TXT or TSA/erlotinib synergistically inhibited cell proliferation, induced apoptosis, and caused cell cycle delay at the $G_2/M$ transition. Treatment with TSA/TXT or TSA/erlotinib led to a significant increase of cleaved caspase-3 expression, also resulting in elevated acetylation of ${\alpha}$-tubulin or hsp90 and decreased expression of EGFR, which was negatively associated with the level of acetylated hsp90. Conclusions: Synergistic anti-tumor effects are observed between TXT or erlotinib and TSA on lung cancer cells. Such combinations may provide a more effective strategy for treating human lung cancer.

Identification of Histone Deacetylase 1 Protein Complexes in Liver Cancer Cells

  • Farooq, Muhammad;Hozzein, Wael N.;Elsayed, Elsayed A.;Taha, Nael A.;Wadaan, Mohammad A.M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.915-921
    • /
    • 2013
  • Background: Hepatocellular carcinoma is one of the leading causes of mortalities worldwide. The search for new therapeutic targets is of utmost importance for improved treatment. Altered expression of HDAC1 in hepatocellular carcinoma (HCC) and its requirement for liver formation in zebrafish, suggest that it may regulate key events in liver carcinogenesis and organogenesis. However, molecular mechanisms of HDAC1 action in liver carcinogenesis are largely unknown. The present study was conducted to identify HDAC1 interacting proteins in HepG2 cells using modified SH-double-affinity purification coupled with liquid mass spectrophotemetery. Materials and Methods: HepG2 cells were transfected with a construct containing HDAC1 with a C-terminal strepIII-HA tag as bait. Bait proteins were confirmed to be expressed in HepG2 cells by western blotting and purified by double affinity columns and protein complexes for analysis on a Thermo LTQ Orbitrap XL using a C18 nano flow ESI liquid chromatography system. Results: There were 27 proteins which showed novel interactions with HDAC1 identified only in this study, while 14 were among the established interactors. Various subunits of T complex proteins (TCP1) and prefoldin proteins (PFDN) were identified as interacting partners that showed high affinity with HDAC1 in HepG2 cells. Conclusions: The double affinity purification method adopted in this study was very successful in terms of specificity and reproducibility. The novel HDAC1 complex identified in this study could be better therapeutic target for treatment of hepatocellular carcinoma.

Apicidin Induces Apoptosis via Cytochrome c-Mediated Intrinsic Pathway in Human Ovarian Cancer Cells

  • Ahn, Mee-Young;Na, Yong-Jin;Lee, Jae-Won;Lee, Byung-Mu;Kim, Hyung-Sik
    • Biomolecules & Therapeutics
    • /
    • v.17 no.1
    • /
    • pp.17-24
    • /
    • 2009
  • Histone deacetylase (HDAC) inhibitors are a promising class of anticancer agents that inhibit cancer cell growth in vitro and in vivo. Previous report has shown that apicidin inhibited SK-OV-3 cells proliferation and down-regulation of cyclin B1 and CDK1, and up-regulation of $p21^{WAF1}$ and p27. However, the mechanism of apicidin-mediated apoptotic cell death is not clearly understood. For this study, we investigated the mechanism of apoptotic pathway induced by apicidin in human ovarian cancer cell. We found that SK-OV-3 cells treated with apicidin caused an increase in the percentage of cells in the G2/M phase, which preceded apoptosis characterized by the appearance of cells with sub-G1 population. To further investigate the mechanism of apoptosis induction by apicidin, we measured TUNEL assay, poly-ADP ribose polymerase (PARP) cleavage, and caspase activity in SK-OV-3 cells treated with apicidin for 48 h. Apicidin significantly enhanced apoptosis as measured by TUNEL positive apoptotic cells, PARP cleavage, and increased Bax/Bcl-2 ratio. Induction of apoptosis was confirmed by the release of cytochrome c to cytosol. Our data suggest that apicidin-induced apoptosis in SK-OV-3 cells was accompanied by caspase-3 activation and the increase in Bax/Bcl-2 ratio. These data suggest that apicidin may be effective in the treatment of ovarian cancer through activation of intrinsic apoptotic pathway.

A New Histone Deacetylase Inhibitor, MHY219, Inhibits the Migration of Human Prostate Cancer Cells via HDAC1

  • De, Umasankar;Kundu, Soma;Patra, Nabanita;Ahn, Mee Young;Ahn, Ji Hae;Son, Ji Yeon;Yoon, Jung Hyun;Moon, Hyung Ryoung;Lee, Byung Mu;Kim, Hyung Sik
    • Biomolecules & Therapeutics
    • /
    • v.23 no.5
    • /
    • pp.434-441
    • /
    • 2015
  • Histone deacetylase (HDAC) inhibitors are considered novel agents for cancer chemotherapy. We previously investigated MHY219, a new HDAC inhibitor, and its potent anticancer activity in human prostate cancer cells. In the present study, we evaluated MHY219 molecular mechanisms involved in the regulation of prostate cancer cell migration. Similar to suberanilohydroxamic acid (SAHA), MHY219 inhibited HDAC1 enzyme activity in a dose-dependent manner. MHY219 cytotoxicity was higher in LNCaP ($IC_{50}=0.67{\mu}M$) than in DU145 cells ($IC_{50}=1.10{\mu}M$) and PC3 cells ($IC_{50}=5.60{\mu}M$) after 48 h of treatment. MHY219 significantly inhibited the HDAC1 protein levels in LNCaP and DU145 cells at high concentrations. However, inhibitory effects of MHY219 on HDAC proteins levels varied based on the cell type. MHY219 significantly inhibited LNCaP and DU145 cells migration by down-regulation of matrix metalloprotease-1 (MMP-1) and MMP-2 and induction of tissue inhibitor of metalloproteinases-1 (TIMP-1). These results suggest that MHY219 may potentially be used as an anticancer agent to block cancer cell migration through the repression of MMP-1 and MMP-2, which is related to the reduction of HDAC1.

Effect of Valproic acid, a Histone Deacetylase Inhibitor, on the Expression of Pluripotency and Neural Crest Specific Marker Genes in Murine Multipotent Skin Precursor Cells

  • Hong, Ji-Hoon;Park, Sang-Kyu;Roh, Sang-Ho
    • International Journal of Oral Biology
    • /
    • v.35 no.4
    • /
    • pp.209-214
    • /
    • 2010
  • Cells that have endogenous multipotent properties can be used as a starting source for the generation of induced pluripotent cells (iPSC). In addition, small molecules associated with epigenetic reprogramming are also widely used to enhance the multi- or pluripotency of such cells. Skinderived precursor cells (SKPs) are multipotent, sphereforming and embryonic neural crest-related precursor cells. These cells can be isolated from a juvenile or adult mammalian dermis. SKPs are also an efficient starting cell source for reprogramming and the generation of iPSCs because of the high expression levels of Sox2 and Klf4 in these cells as well as their endogenous multipotency. In this study, valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, was tested in the generation of iPSCs as a potential enhancer of the reprogramming potential of SKPs. SKPs were isolated from the back skins of 5-6 week old C57BL/6 X DBA/2 F1 mice. After passage 3, the SKPs was treated with 2 mM of VPA and the quantitative real time RT-PCR was performed to quantify the expression of Oct4 and Klf4 (pluripotency specific genes), and Snai2 and Ngfr (neural crest specific genes). The results show that Oct4 and Klf4 expression was decreased by VPA treatment. However, there were no significant changes in neural crest specific gene expression following VPA treatment. Hence, although VPA is one of the most potent of the HDAC inhibitors, it does not enhance the reprogramming of multipotent skin precursor cells in mice.

3D-QSAR and Molecular Docking Studies on Benzotriazoles as Antiproliferative Agents and Histone Deacetylase Inhibitors

  • Li, Xiaolin;Fu, Jie;Shi, Wei;Luo, Yin;Zhang, Xiaowei;Zhu, Hailiang;Yu, Hongxia
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2387-2393
    • /
    • 2013
  • Benzotriazole is an important synthetic auxiliary for potential clinical applications. A series of benzotriazoles as potential antiproliferative agents by inhibiting histone deacetylase (HDAC) were recently reported. Three-dimensional quantitative structure-activity relationship (3D-QSAR), including comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA), were performed to elucidate the 3D structural features required for the antiproliferative activity. The results of both ligand-based CoMFA model ($q^2=0.647$, $r^2=0.968$, ${r^2}_{pred}=0.687$) and CoMSIA model ($q^2=0.685$, $r^2=0.928$, ${r^2}_{pred}=0.555$) demonstrated the highly statistical significance and good predictive ability. The results generated from CoMFA and CoMSIA provided important information about the structural characteristics influence inhibitory potency. In addition, docking analysis was applied to clarify the binding modes between the ligands and the receptor HDAC. The information obtained from this study could provide some instructions for the further development of potent antiproliferative agents and HDAC inhibitors.

Anti-Cancer Effect of 3-(4-dimethylamino phenyl)-N-hydroxy-2-propenamide in MCF-7 Human Breast Cancer

  • Min, Kyung-Nan;Joung, Ki-Eun;Kim, Dae-Kee;Sheen, Yhun-Yhong
    • Environmental Analysis Health and Toxicology
    • /
    • v.27
    • /
    • pp.10.1-10.7
    • /
    • 2012
  • Objectives: In recent years, a number of structurally diverse Histone deacetylase (HDAC) inhibitors have been identified and these HDAC inhibitors induce growth arrest, differentiation and/or apoptosis of cancer cells in vitro and in vivo. This study aimed at investigating the antitumor activity of newly synthesized HDAC inhibitor, 3-(4-dimethylamino phenyl)-N-hydroxy-2-propenamide (IN-2001) using human breast cancer cells. Methods: We have synthesized a new HDAC inhibitor, IN-2001, and cell proliferation inhibition assay with this chemical in estrogen receptor-positive human breast cancer MCF-7 cells. Cell cycle analysis on MCF-7 cells treated with IN-2001 was carried out by flow cytometry and gene expression was measured by RT-PCR. Results: In MCF-7 cells IN-2001 showed remarkable anti-proliferative effects in a dose- and time-dependent manner. In MCF-7 cells, IN-2001 showed a more potent growth inhibitory effect than that of suberoylanilide hydroxamic acid. These growth inhibitory effects were related to the cell cycle arrest and induction of apoptosis. IN-2001 showed accumulation of cells at $G_2$/M phase and of the sub-$G_1$ population in a time-dependent manner, representing apoptotic cells. IN-2001-mediated cell cycle arrest was associated with HDAC inhibitor-mediated induction of CDK inhibitor expression. In MCF-7 cells, IN-2001 significantly increased $p21^{WAF1}$ expression. Conclusions: In summary, cyclin-dependent kinase (CDK) induced growth inhibition, possibly through modulation of cell cycle and apoptosis regulatory proteins, such as CDK inhibitors, and cyclins. Taken together, these results provide an insight into the utility of HDAC inhibitors as a novel chemotherapeutic regime for hormone-sensitive and insensitive breast cancer.

Suppression of HIF-1α by Valproic Acid Sustains Self-Renewal of Mouse Embryonic Stem Cells under Hypoxia In Vitro

  • Lee, Hyo-Jong;Kim, Kyu-Won
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.280-285
    • /
    • 2012
  • The developing embryo naturally experiences relatively low oxygen conditions in vivo. Under in vitro hypoxia, mouse embryonic stem cells (mESCs) lose their self-renewal activity and display an early differentiated morphology mediated by the hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$). Previously, we demonstrated that histone deacetylase (HDAC) is activated by hypoxia and increases the protein stability and transcriptional activity of HIF-$1{\alpha}$ in many human cancer cells. Furthermore HDAC1 and 3 mediate the differentiation of mECSs and hematopoietic stem cells. However, the role of HDACs and their inhibitors in hypoxia-induced early differentiation of mESCs remains largely unknown. Here, we examined the effects of several histone deacetylase inhibitors (HDACIs) on the self-renewal properties of mESCs under hypoxia. Inhibition of HDAC under hypoxia effectively decreased the HIF-$1{\alpha}$ protein levels and substantially improved the expression of the LIF-specific receptor (LIFR) and phosphorylated-STAT3 in mESCs. In particular, valproic acid (VPA), a pan HDACI, showed dramatic changes in HIF-$1{\alpha}$ protein levels and LIFR protein expression levels compared to other HDACIs, including sodium butyrate (SB), trichostatin A (TSA), and apicidin (AP). Importantly, our RT-PCR data and alkaline phosphatase assays indicate that VPA helps to maintain the self-renewal activity of mESCs under hypoxia. Taken together, these results suggest that VPA may block the early differentiation of mESCs under hypoxia via the destabilization of HIF-$1{\alpha}$.

Epigenetically Upregulated T-Type Calcium Channels Contribute to Abnormal Proliferation of Embryonic Neural Progenitor Cells Exposed to Valproic Acid

  • Kim, Ji-Woon;Oh, Hyun Ah;Kim, Sung Rae;Ko, Mee Jung;Seung, Hana;Lee, Sung Hoon;Shin, Chan Young
    • Biomolecules & Therapeutics
    • /
    • v.28 no.5
    • /
    • pp.389-396
    • /
    • 2020
  • Valproic acid is a clinically used mood stabilizer and antiepileptic drug. Valproic acid has been suggested as a teratogen associated with the manifestation of neurodevelopmental disorders, such as fetal valproate syndrome and autism spectrum disorders, when taken during specific time window of pregnancy. Previous studies proposed that prenatal exposure to valproic acid induces abnormal proliferation and differentiation of neural progenitor cells, presumably by inhibiting histone deacetylase and releasing the condensed chromatin structure. Here, we found valproic acid up-regulates the transcription of T-type calcium channels by inhibiting histone deacetylase in neural progenitor cells. The pharmacological blockade of T-type calcium channels prevented the increased proliferation of neural progenitor cells induced by valproic acid. Differentiated neural cells from neural progenitor cells treated with valproic acid displayed increased levels of calcium influx in response to potassium chloride-induced depolarization. These results suggest that prenatal exposure to valproic acid up-regulates T-type calcium channels, which may contribute to increased proliferation of neural progenitor cells by inducing an abnormal calcium response and underlie the pathogenesis of neurodevelopmental disorders.