DOI QR코드

DOI QR Code

3D-QSAR and Molecular Docking Studies on Benzotriazoles as Antiproliferative Agents and Histone Deacetylase Inhibitors

  • Li, Xiaolin (State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University) ;
  • Fu, Jie (State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University) ;
  • Shi, Wei (State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University) ;
  • Luo, Yin (State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University) ;
  • Zhang, Xiaowei (State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University) ;
  • Zhu, Hailiang (State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University) ;
  • Yu, Hongxia (State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University)
  • Received : 2013.04.15
  • Accepted : 2013.05.16
  • Published : 2013.08.20

Abstract

Benzotriazole is an important synthetic auxiliary for potential clinical applications. A series of benzotriazoles as potential antiproliferative agents by inhibiting histone deacetylase (HDAC) were recently reported. Three-dimensional quantitative structure-activity relationship (3D-QSAR), including comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA), were performed to elucidate the 3D structural features required for the antiproliferative activity. The results of both ligand-based CoMFA model ($q^2=0.647$, $r^2=0.968$, ${r^2}_{pred}=0.687$) and CoMSIA model ($q^2=0.685$, $r^2=0.928$, ${r^2}_{pred}=0.555$) demonstrated the highly statistical significance and good predictive ability. The results generated from CoMFA and CoMSIA provided important information about the structural characteristics influence inhibitory potency. In addition, docking analysis was applied to clarify the binding modes between the ligands and the receptor HDAC. The information obtained from this study could provide some instructions for the further development of potent antiproliferative agents and HDAC inhibitors.

Keywords

References

  1. Jemal, A.; Bray, F.; Center, M. M.; Ferlay, J.; Ward, E.; Forman, D. Ca: A Cancer J. Clin. 2011, 61, 69. https://doi.org/10.3322/caac.20107
  2. Ma, X.; Xiang, G. Y.; Yap, C. W.; Chui, W. K. Bioorg. Med. Chem. Lett. 2012, 22, 3194. https://doi.org/10.1016/j.bmcl.2012.03.041
  3. Gomez-Perez, V.; McSorley, T.; Too, W. C. S.; Konrad, M.; Campos, J. M. Chemmedchem 2012, 7, 663. https://doi.org/10.1002/cmdc.201100505
  4. Markovic, V.; Eric, S.; Stanojkovic, T.; Gligorijevic, N.; Arandelovic, S.; Todorovic, N.; Trifunovic, S.; Manojlovic, N.; Jelic, R.; Joksovic, M. D. Bioorg. Med. Chem. Lett. 2011, 21, 4416. https://doi.org/10.1016/j.bmcl.2011.06.025
  5. Drakulic, B. J.; Stanojkovic, T. P.; Zizak, Z. S.; Dabovic, M. M.. Eur. J. Med. Chem. 2011, 46, 3265. https://doi.org/10.1016/j.ejmech.2011.04.043
  6. Liu, J.; Li, Y.; Zhang, H. X.; Zhang, S. W.; Yang, L. J. Mol. Model. 2012, 18, 991. https://doi.org/10.1007/s00894-011-1137-x
  7. Taft, C. A.; Da Silva, V. B.; Da Silva, C. J. Pharm. Sci. 2008, 97, 1089. https://doi.org/10.1002/jps.21293
  8. Phosrithong, N.; Samee, W.; Ungwitayatorn, J. Med. Chem. Res. 2012, 21, 559. https://doi.org/10.1007/s00044-011-9570-z
  9. Madhavan, T.; Kothandan, G.; Gadhe, C. G.; Cho, S. J. Med. Chem. Res. 2012, 21, 681. https://doi.org/10.1007/s00044-011-9572-x
  10. Ghasemi, J. B.; Shiri, F. Med. Chem. Res. 2012, 21, 2788. https://doi.org/10.1007/s00044-011-9803-1
  11. Xu, Y. Y.; Zhang, L.; Li, M. Y.; Xu, W. F.; Fang, H.; Shang, L. Q. Med. Chem. Res. 2012, 21, 1000. https://doi.org/10.1007/s00044-011-9597-1
  12. Islam, M. A.; Pal, R.; Hossain, T.; Mukherjee, A.; Saha, A. Med. Chem. Res. 2012, 21, 2652. https://doi.org/10.1007/s00044-011-9790-2
  13. Li, X.L.; Ye, L.; Wang, X.X.; Wang, X. Z.; Liu, H. L.; Zhu, Y. L.; Yu, H. X. Toxicol. Appl. Pharm. 2012, 265, 300. https://doi.org/10.1016/j.taap.2012.08.030
  14. Wang, X. X.; Li, X. L.; Shi, W.; Wei, S.; Giesy, J. P.; Yu, H. X. Ecotox. Environ. Safe. 2013, 89, 143. https://doi.org/10.1016/j.ecoenv.2012.11.020
  15. Handratta, V. D.; Vasaitis, T. S.; Njar, V. C. O.; Gediya, L. K.; Kataria, R.; Chopra, P. J. Med. Chem. 2005, 48, 2972. https://doi.org/10.1021/jm040202w
  16. Saczewski, F.; Dziemidowicz-Borys, E.; Bednarski, P. J.; Gdaniec, M. Archiv. Der. Pharmazie. 2007, 340, 333. https://doi.org/10.1002/ardp.200700021
  17. Katritzky, A. R.; Yoshioka, M.; Narindoshvili, T.; Chung, A.; Khashab, N. M. Chem. Biol. Drug. Des. 2008, 72, 182. https://doi.org/10.1111/j.1747-0285.2008.00689.x
  18. Rajic, Z.; Butula, I.; Zorc, B.; Pavelic, S. K.; Hock, K.; Pavelic, K. Chem. Biol. Drug. Des. 2009, 73, 328. https://doi.org/10.1111/j.1747-0285.2009.00774.x
  19. Fu, J.; Yang, Y.; Zhang, X. W.; Mao, W. J.; Zhang, Z. M.; Zhu, H. L. Bioorg. Med. Chem. 2010, 18, 8457. https://doi.org/10.1016/j.bmc.2010.10.049
  20. Grunstein, M. Nature 1997, 389, 349. https://doi.org/10.1038/38664
  21. Mai, A.; Massa, S.; Ragno, R.; Cerbara, I.; Jesacher, F.; Loidl, P.; Brosch, G. J. Med. Chem. 2003, 46, 512. https://doi.org/10.1021/jm021070e
  22. Clark, M.; Cramer, R. D.; Vanopdenbosch, N. J. Comput. Chem. 1989, 10, 982. https://doi.org/10.1002/jcc.540100804
  23. Li, X. L.; Ye, L.; Wang, X. X.; Wang, X. Z.; Wang, X. Z.; Liu, H. L.; Yu, H. X. Sci. Total Environ. 2012, 441, 230. https://doi.org/10.1016/j.scitotenv.2012.08.072
  24. Zheng, J. X.; Xiao, G. K.; Guo, J. L.; Rao, L. Y.; Chao, W.; Zhang, K.; Sun, P. H. J. Mol. Model. 2011, 17, 2113. https://doi.org/10.1007/s00894-011-1016-5
  25. Wold, S.; Ruhe. A.; Wold, H.; Dunn, W. J. SIAM J. Sci. Stat. Comp. 1984, 5, 735. https://doi.org/10.1137/0905052
  26. Yang, W. H.; Shen, S.; Mu, L.; Yu, H. X. Environ. Toxicol. Chem. 2011, 30, 2431. https://doi.org/10.1002/etc.645
  27. Aparoy, P.; Suresh, G. K.; Reddy, K. K.; Reddanna, P. Bioorg. Med. Chem. Lett. 2011, 21, 456. https://doi.org/10.1016/j.bmcl.2010.10.119
  28. da Cunha, E. F. F.; Mancini, D. T.; Ramalho, T. C. Med. Chem. Res. 2012, 21, 590. https://doi.org/10.1007/s00044-011-9554-z
  29. Jain, A. N. J. Comput. Aided Mol. Des. 2007, 21, 281. https://doi.org/10.1007/s10822-007-9114-2
  30. Wu, X. Y.; Wu, S. G.; Chen, W. H. J. Mol. Model. 2012, 18, 1207. https://doi.org/10.1007/s00894-011-1146-9
  31. Shen, X. L.; Takimoto-Kamimura, M.; Wei, J.; Gao, Q. Z. J. Mol. Model. 2012, 18, 203. https://doi.org/10.1007/s00894-011-1066-8
  32. Hao, M.; Li, Y.; Wang, Y.; Yan, Y.; Zhang, S. J. Chem. Inf. Model. 2011, 51, 2560. https://doi.org/10.1021/ci2002878

Cited by

  1. Benzotriazole: An overview on its versatile biological behavior vol.97, pp.None, 2013, https://doi.org/10.1016/j.ejmech.2014.09.089