• Title/Summary/Keyword: hinges (structural)

Search Result 137, Processing Time 0.027 seconds

Progressive collapse vulnerability in 6-Story RC symmetric and asymmetric buildings under earthquake loads

  • Karimiyan, Somayyeh;Kashan, Ali Husseinzadeh;Karimiyan, Morteza
    • Earthquakes and Structures
    • /
    • v.6 no.5
    • /
    • pp.473-494
    • /
    • 2014
  • Progressive collapse, which is referred to as the collapse of the entire building under local damages, is a common failure mode happened by earthquakes. The collapse process highly depends on the whole structural system. Since, asymmetry of the building plan leads to the local damage concentration; it may intensify the progressive collapse mechanism of asymmetric buildings. In this research the progressive collapse of regular and irregular 6-story RC ordinary moment resisting frame buildings are studied in the presence of the earthquake loads. Collapse process and collapse propagation are investigated using nonlinear time history analyses (NLTHA) in buildings with 5%, 15% and 25% mass asymmetry with respect to the number of collapsed hinges and story drifts criteria. Results show that increasing the value of mass eccentricity makes the asymmetric buildings become unstable earlier and in the early stages with lower number of the collapsed hinges. So, with increasing the mass eccentricity in building, instability and collapse of the entire building occurs earlier, with lower potential of the progressive collapse. It is also demonstrated that with increasing the mass asymmetry the decreasing trend of the number of collapsed beam and column hinges is approximately similar to the decreasing trend in the average story drifts of the mass centers and stiff edges. So, as an alternative to a much difficult-to-calculate local response parameter of the number of collapsed hinges, the story drift, as a global response parameter, measures the potential of progressive collapse more easily.

Plastic Hinge Modeling Based on Lumped Plasticity using a Generalized Finite Element Method (일반유한요소법을 이용한 집중소성힌지 모델링)

  • Son, Hong-Jun;Rhee, Seung-Ho;Kim, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.381-388
    • /
    • 2018
  • This paper presents a generalized finite element formulation for plastic hinge modeling based on lumped plasticity in the classical Euler-Bernoulli beam elements. In this approach, the plastic hinges are effectively modeled using proper enrichment functions describing weak discontinuities of the solution. The proposed methodology enables the insertion of plastic hinges at an arbitrary location without modifying the connectivity of elements. The formations of plastic hinges are instead achieved by hierarchically adding degrees of freedom to existing elements. Convergence analyses such as h- and p-extensions are performed to investigate the effectiveness of the proposed method. The analysis results indicate that the proposed generalized finite element method can achieve theoretical convergence rates for both cases where plastic hinges are located at nodes and within an element, thus demonstrating its accuracy.

Plastic Shear Hinges for the Seismic Design for Steel Building Structures (철골 건축구조물의 내진설계를 위한 소성 전단 힌지)

  • 이승준
    • Computational Structural Engineering
    • /
    • v.3 no.3
    • /
    • pp.25-29
    • /
    • 1990
  • 고층건축구조물의 내진설계에서는 강성, 강도와 연성사이의 균형이 적절하게 유지되어야 한다. 이 글은 철골고층건물의 대표적인 구조시스템인 모멘트 골조와 가새골조의 내진거동에 대한 이해를 넓히고자 최근 연구되어온 Panel Zone과 Link Beam의 거동에 대한 결과와 설계시 유의사항을 간략하게 소개하였다.

  • PDF

Enhanced generalized modeling method for compliant mechanisms: Multi-Compliant-Body matrix method

  • Lim, Hyunho;Choi, Young-Man
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.503-515
    • /
    • 2022
  • The multi-rigid-body matrix method (MRBMM) is a generalized modeling method for obtaining the displacements, forces, and dynamic characteristics of a compliant mechanism without performing inner-force analysis. The method discretizes a compliant mechanism of any type into flexure hinges and rigid bodies by implementing a multi-body mass-spring model using coordinate transformations in a matrix form. However, in this method, the deformations of bodies that are assumed to be rigid are inherently omitted. Consequently, it may yield erroneous results in certain mechanisms. In this paper, we present a multi-compliant-body matrix-method (MCBMM) that considers a rigid body as a compliant element, while retaining the generalized framework of the MRBMM. In the MCBMM, a rigid body in the MRBMM is segmented into a certain number of body nodes and flexure hinges. The proposed method was verified using two examples: the first (an XY positioning stage) demonstrated that the MCBMM outperforms the MRBMM in estimating the static deformation and dynamic mode. In the second example (a bridge-type displacement amplification mechanism), the MCBMM estimated the displacement amplification ratio more accurately than several previously proposed modeling methods.

Modeling of cyclic bond deterioration in RC beam-column connections

  • Picon-Rodriguez, Ricardo;Quintero-Febres, Carlos;Florez-Lopez, Julio
    • Structural Engineering and Mechanics
    • /
    • v.26 no.5
    • /
    • pp.569-589
    • /
    • 2007
  • This paper presents an analytical model for RC beam-column connections that takes into account bond deterioration between reinforcing steel and concrete. The model is based on the Lumped Damage Mechanics (LDM) theory which allows for the characterization of cracking, degradation and yielding, and is extended in this paper by the inclusion of the slip effect as observed in those connections. Slip is assumed to be lumped at inelastic hinges. Thus, the concept of "slip hinge", based on the Coulomb friction plasticity theory, is formulated. The influence of cracking on the slip behavior is taken into account by using two concepts of LDM: the effective moment on an inelastic hinge and the strain equivalence hypothesis. The model is particularly suitable for wide beam-column connections for which bond deterioration dominates the hysteretic response. The model was evaluated by the numerical simulation of five tests reported in the literature. It is found that the model reproduces closely the observed behavior.

Response of structure with controlled uplift using footing weight

  • Qin, X.;Chouw, N.
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.555-564
    • /
    • 2018
  • Allowing structures to uplift in earthquakes can significantly reduce or even avoid the development of plastic hinges within the structure. The permanent deformations in the structure can thus be minimized. However, uplift of footings can cause additional horizontal movements of a structure. With an increase in movement relative to adjacent structures, the probability of pounding between structures increases. This experimental study reveals that the footing mass can be used to control the vertical displacement of footing and thus reduce the horizontal displacements of an upliftable structure. A four storey model structure with plastic hinges and uplift capability was considered. Shake table tests using ten different earthquake records were conducted. Three different footing masses were considered. It is found that the amplitude of footing uplift can be greatly reduced by increasing the mass of the footing. As a result, allowing structural uplift does not necessary increase the horizontal displacement of the structure. The results show that with increasing footing weight, the interaction between structural and footing response can increase the contribution of the higher modes to the structural response. Consequently, the induced vibrations on secondary structure increase.

Diverse modeling techniques, parameters, and assumptions for nonlinear dynamic analysis of typical concrete bridges with different pier-to-deck connections: which to use and why

  • Morkos, B.N.;Farag, M.M.N.;Salem, S.;Mehanny, S.S.F.;Bakhoum, M.M.
    • Earthquakes and Structures
    • /
    • v.22 no.3
    • /
    • pp.245-261
    • /
    • 2022
  • Key questions to researchers interested in nonlinear analysis of skeletal structures are whether the distributed plasticity approach - albeit computationally demanding - is more reliable than the concentrated plasticity to adequately capture the extent and severity of the inelastic response, and whether force-based formulation is more efficient than displacement-based formulation without compromising accuracy. The present research focusing on performance-based seismic response of mid-span concrete bridges provides a pilot holistic investigation opting for some hands-on answers. OpenSees software is considered adopting different modeling techniques, viz. distributed plasticity (through either displacement-based or force-based elements) and concentrated plasticity via beam-with-hinges elements. The pros and cons of each are discussed based on nonlinear pushover analysis results, and fragility curves generated for various performance levels relying on incremental dynamic analyses under real earthquake records. Among prime conclusions, distributed plasticity modeling albeit inherently not relying on prior knowledge of plastic hinge length still somewhat depends on such information to ensure accurate results. For instance, displacement-based and force-based approaches secure optimal accuracy when dividing, for the former, the member into sub-elements, and satisfying, for the latter, a distance between any two consecutive integration points, close to the expected plastic hinge length. On the other hand, using beam-with-hinges elements is computationally more efficient relative to the distributed plasticity, yet with acceptable accuracy provided the user has prior reasonable estimate of the anticipated plastic hinge length. Furthermore, when intrusive performance levels (viz. life safety or collapse) are of concern, concentrated plasticity via beam-with-hinges ensures conservative predicted capacity of investigated bridge systems.

Influence of steel-concrete interaction in dissipative zones of frames: I - Experimental study

  • Ciutina, Adrian;Dubina, Dan;Danku, Gelu
    • Steel and Composite Structures
    • /
    • v.15 no.3
    • /
    • pp.299-322
    • /
    • 2013
  • In the case of seismic-resistant composite dual moment resisting and eccentrically braced frames, the current design practice is to avoid the disposition of shear connectors in the expected plastic zones, and consequently to consider a symmetric moment or shear plastic hinges, which occur only in the steel beam or link. Even without connectors, the real behaviour of the hinge may be different from the symmetric assumption, since the reinforced concrete slab is connected to the steel element close to the hinge locations, and also due to contact friction between the concrete slab and the steel element. The paper presents the results and conclusions of experimental tests on composite portal eccentrically braced frames and beam-to-column moment-resisting joints, carried out within the CEMSIG Research Centre of the Politehnica University of Timisoara, in order to check the validity of the assumption stated above. Reference steel and composite specimens with and without connectors in the plastic zones have been tested under monotonic and cyclic seismic type loading.

Seismic Performance of PC Moment Frame with Plastic Shear Hinge (소성전단힌지를 갖는 PC 모멘트 골조의 내진성능)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.353-362
    • /
    • 2015
  • Cyclic loading tests for the PC moment frame with plastic shear hinges were performed to evaluate the seismic performance. The plastic shear hinges consisted of two steel plates were installed at the mid-length of the beam to connect the PC frames. Three shear links are existed in each steel plate. The three shear links were designed using shear force corresponding to the shear capacity of 50%, 75%, and 100% of the beam shear capacity. The proposed connections showed an efficient energy dissipation capacity and good structural performance. As a result, it is reasonable to design the plastic shear hinges using design shear capacity less than 100% of the beam shear capacity.

Improved capacity spectrum method with inelastic displacement ratio considering higher mode effects

  • Han, Sang Whan;Ha, Sung Jin;Moon, Ki Hoon;Shin, Myoungsu
    • Earthquakes and Structures
    • /
    • v.7 no.4
    • /
    • pp.587-607
    • /
    • 2014
  • Progressive collapse, which is referred to as the collapse of the entire building under local damages, is a common failure mode happened by earthquakes. The collapse process highly depends on the whole structural system. Since, asymmetry of the building plan leads to the local damage concentration; it may intensify the progressive collapse mechanism of asymmetric buildings. In this research the progressive collapse of regular and irregular 6-story RC ordinary moment resisting frame buildings are studied in the presence of the earthquake loads. Collapse process and collapse propagation are investigated using nonlinear time history analyses (NLTHA) in buildings with 5%, 15% and 25% mass asymmetry with respect to the number of collapsed hinges and story drifts criteria. Results show that increasing the value of mass eccentricity makes the asymmetric buildings become unstable earlier and in the early stages with lower number of the collapsed hinges. So, with increasing the mass eccentricity in building, instability and collapse of the entire building occurs earlier, with lower potential of the progressive collapse. It is also demonstrated that with increasing the mass asymmetry the decreasing trend of the number of collapsed beam and column hinges is approximately similar to the decreasing trend in the average story drifts of the mass centers and stiff edges. So, as an alternative to a much difficult-to-calculate local response parameter of the number of collapsed hinges, the story drift, as a global response parameter, measures the potential of progressive collapse more easily.