• Title/Summary/Keyword: hinges

Search Result 351, Processing Time 0.019 seconds

Nonlinear incremental dynamic analysis and fragility curves of tall steel buildings with buckling restrained braces and tuned mass dampers

  • Verki, Amir Masoumi;Preciado, Adolfo
    • Earthquakes and Structures
    • /
    • v.22 no.2
    • /
    • pp.169-184
    • /
    • 2022
  • The importance of seismicity in developing countries and the strengthening of buildings is a topic of major importance. Therefore, the study of several solutions with the development of new technologies is of great importance to investigate the damage on retrofitted structures by using probabilistic methods. The Federal Emergency Management Agency considers three types of performance levels by considering different scenarios, intensity and duration. The selection and scaling of ground motions mainly depends on the aim of the study. Intensity-based assessments are the most common and compute the response of buildings for a specified seismic intensity. Assessments based on scenarios estimate the response of buildings to different earthquake scenarios. A risk-based assessment is considered as one of the most effective. This research represents a practical method for developing countries where exists many active faults, tall buildings and lack of good implementable approaches. Therefore, to achieve the main goal, two high-rise steel buildings have been modeled and assessed. The contribution of buckling-restrained braces in the elastic design of both buildings is firstly verified. In the nonlinear static range, both buildings presented repairable damage at the central top part and some life safety hinges at the bottom. The nonlinear incremental dynamic analysis was applied by 15 representative/scaled accelerograms to obtain levels of performance and fragility curves. The results shown that by using probabilistic methods, it is possible to estimate the probability of collapse of retrofitted buildings by buckling-restrained braces and tuned mass dampers, which are practical retrofitting options to protect existing structures against earthquakes.

Cyclic loading behavior of high-strength steel framed-tube structures with replaceable shear links constructed using Q355 structural steel

  • Guo, Yan;Lian, Ming;Zhang, Hao;Cheng, Qianqian
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.827-841
    • /
    • 2022
  • The rotation capacities of the plastic hinges located at beam-ends are significantly reduced in traditional steel framed-tube structures (SFTSs) because of the small span-to-depth ratios of the deep beams, leading to the low ductility and energy dissipation capacities of the SFTSs. High-strength steel framed-tube structures with replaceable shear links (HSSFTS-RSLs) are proposed to address this issue. A replaceable shear link is located at the mid-span of a deep spandrel beam to act as a ductile fuse to dissipate the seismic energy in HSSFTS-RSLs. A 2/3-scaled HSSFTS-RSL specimen with a shear link fabricated of high-strength low-alloy Q355 structural steel was created, and a cyclic loading test was performed to study the hysteresis behaviors of this specimen. The test results were compared to the specimens with soft steel shear links in previous studies to investigate the feasibility of using high-strength low-alloy steel for shear links in HSSFTS-RSLs. The effects of link web stiffener spaces on the cyclic performance of the HSSFTS-RSLs with Q355 steel shear links were investigated based on the nonlinear numerical analysis. The test results indicate that the specimen with a Q355 steel shear link exhibited a reliable and stable seismic performance. If the maximum interstory drift of HSSFTS-RSL is designed lower than 2% under earthquakes, the HSSFTS-RSLs with Q355 steel shear links can have similar seismic performance to the structures with soft steel shear links, even though these shear links have similar shear and flexural strength. For the Q355 steel shear links with web height-to-thickness ratios higher than 30.7 in HSSFTS-RSLs, it is suggested that the maximum intermediate web stiffener space is decreased by 15% from the allowable space for the shear link in AISC341-16 due to the analytical results.

Experimental study on the behavior of reinforced concrete beam boosted by a post-tensioned concrete layer

  • Mirzaee, Alireza;Torabi, Ashkan;Totonchi, Arash
    • Computers and Concrete
    • /
    • v.28 no.6
    • /
    • pp.549-557
    • /
    • 2021
  • Nowadays, strengthening of buildings is an inclusive and effective field in civil engineering that is not only applicable to the buildings but also it can be developed for the bridges. Rehabilitation and strengthening of structures are highly recommended for the existing structures due to the alter in codes and provisions as well as buildings' use change. Extensive surveys have been conducted in this field in the world that propose wide variety of methods for strengthening of structures. In recent years, more specific researches have been carried out that present novel materials for rehabilitation beside proposing methods and performing techniques. In the current study, a novel technique for developing the bending capacity of reinforced concrete beams to enhance their performance as well as rehabilitating and reforming the performance of reinforced concrete beams with nonstandard lap splices, has been proposed. In this method, a post-tensioned concrete layer is added to the side face of the concrete beams built in 1:1 scale. Results reveals that addition of the post-tensioned layer enhances the beams' performance and covers their weaknesses. In this method, 18 reinforced concrete beams were prepared for the bending test which were subjected to the four-point pushover test after they were reinforced. The testing process ended when the samples reached complete failure status. Results show that the performance and flexural capacity of reinforced beams without lap splice is improved 22.7% compared to the samples without the post-tensioned layer, while it is enhanced up to at least 80% compared to the reinforced beams with nonstandard lap splice. Furthermore, the location of plastic hinges formation was transformed from the beam's mid-span to the 1/3 of span's end and the beam's cracking pattern was significantly improved.

IBS Beam Element for Nonlinear Seismic Analysis of Steel Moment Frames (강재 모멘트 골조의 비선형 지진 해석을 위한 IBS 보 요소)

  • Kim, Dal Sung;Kim, Dong Seong;Kim, Kee Dong;Ko, Man Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.233-242
    • /
    • 2008
  • This study presents a non-prismatic beam element for modeling the elastic and inelastic behavior of steel beams, which have the post-Northridge(cover plate) connections in steel moment frames that are subjected to earthquake ground motions. The elastic stiffness matrix for non-prismatric members with increased beam section (IBS) connection is in the closed-form. The plasticity model is of a discrete type and is composed of a series of nonlinear hinges connected by rigid links. The hardening rules can model the inelastic behavior for monotonic and random cyclic loading, and the effects of local buckling. Moreover the determination of yield surfaces, stiffness parameters, and hardening (or softening) rule parameters for IBS beam element were described. Analytical results of the IBS beam element show good correlation with test data and FEM results.

Seismic Risk Assessment of Extradosed Bridges with Lead Rubber Bearings (LRB 면진장치가 설치된 엑스트라도즈드교의 지진위험도 평가)

  • Kim, Doo Kie;Seo, Hyeong Yeol;Yi, Jin-Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.155-162
    • /
    • 2006
  • This study presents the seismic risk assesment for an extradosed bridge with seismic isolators of lead rubber bearings(LRB). First, the seismic vulnerability of a structure and then the seismic hazard of the site are evaluated using earthquake data set and seismic hazard map in Korea, and then the seismic risk of the structure is assessed. The nonlinear seismic analyses are carried out to consider plastic hinges of bridge columns and nonlinear characteristics of soil foundation. The ductility demand is adopted to describe the nonlinear behavior of a column, and the moment-curvature curve of a column is assumed to be bilinear hysterestic. The fragility curves are represented as a log-normal distribution function for column damage, movement of superstructure, and cable yielding. And seismic hazard is estimated using the available seismic hazard maps. The results show that the effectiveness of the seismic isolators for the columns is more noticeable than those for cables and girders, in seismic isolated extradosed bridges under earthquakes.

Optimal Seismic Design Method Based on Genetic Algorithms to Induce a Beam-Hinge Mechanism in Reinforced Concrete Moment Frames (철근콘크리트 모멘트골조의 보-힌지 붕괴모드를 유도하는 유전자알고리즘 기반 최적내진설계기법)

  • Se-Woon Choi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.6
    • /
    • pp.399-405
    • /
    • 2023
  • This study presents an optimal seismic design method based on genetic algorithms to induce beam-hinge collapse mechanisms in reinforced concrete moment frames. Two objective functions are used. The first minimizes the cost of the structure and the second maximizes the energy dissipation capacity of the structure. Constraints include strength conditions of columns and beams, minimum conditions for column-to-beam flexural strength ratio, and conditions for preventing plastic hinge occurrence of columns. Linear static analysis is performed to evaluate the strength of members, whereas nonlinear static analysis is carried out to evaluate energy dissipation capacity and occurrence of plastic hinges. The proposed method was applied to a four-story example structure, and it was confirmed that solutions for inducing a beam-hinge collapse mechanism are obtained. The value of the column-beam flexural strength ratio of the obtained design was found to be larger than the value suggested by existing seismic codes. A more robust strategy is needed to induce a beam-hinge collapse mode.

A new formulation of cracking in concrete structures based on lumped damage mechanics

  • Daniel V.C. Teles;Rafael N. Cunha;Ricardo A. Picon;David L.N.F. Amorim;Yongtao Bai;Sergio P.B. Proenca;Julio Florez-Lopez
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.451-462
    • /
    • 2023
  • Lumped Damage Mechanics (LDM) is a theory proposed in the late eighties, which assumes that structural collapse may be analyzed as a two-phase phenomenon. In the first (pre-localization) stage, energy dissipation is a continuous process and it may be modelled by means of the classic versions of the theory of plasticity or Continuum Damage Mechanics (CDM). The second, post-localization, phase can be modelled assuming that energy dissipation is lumped in zones of zero volume: inelastic hinges, hinge lines or localization surfaces. This paper proposes a new LDM formulation for cracking in concrete structures in tension. It also describes its numerical implementation in conventional finite element programs. The results of three numerical simulations of experimental tests reported in the literature are presented. They correspond to plain and fiber-reinforced concrete specimens. A fourth simulation describes also the experimental results of a new test using the digital image correlation technique. These numerical simulations are also compared with the ones obtained using conventional Cohesive Fracture Mechanics (CFM). It is then shown that LDM conserves the advantages of both, CDM and CFM, while overcoming their drawbacks.

Large-scale cyclic test on frame-supported-transfer-slab reinforced concrete structure retrofitted by sector lead rubber dampers

  • Xin Xu;Yun Zhou;Zhang Yan Chen;Da yang Wang;Ke Jiang;Song Wang
    • Earthquakes and Structures
    • /
    • v.26 no.5
    • /
    • pp.383-400
    • /
    • 2024
  • For a conventionally repaired frame-supported-transfer-slab (FSTS) reinforced concrete (RC) structure, both the transfer slab and the beam-to-column and transfer slab-to-column joints remain vulnerable to secondary earthquakes. Aimed at improving the seismic performance of a damaged FSTS RC structure, an innovative retrofitting scheme is proposed, which adopts the sector lead rubber dampers (SLRDs) at joints after the damaged FSTS RC structure is repaired by conventional approaches. In this paper, a series of quasi-static cyclic tests was conducted on a large-scale retrofitted FSTS RC structure. The seismic performance was evaluated and the key test results, including deformation characteristics, damage pattern, hysteretic behaviour, bearing capacity and strains on key components, were reported in detail. The test results indicated that the SLRDs started to dissipate energy under the service level earthquake, and thus prevented damages on the beam-to-column and transfer slab-to-column joints during the secondary earthquakes and shifted the plastic hinges away from the beam ends. The retrofitting scheme of using SLRDs also achieved the seismic design concept of 'strong joint, weak component'. The FSTS RC structure retrofitted by the SLRDs could recover more than 85% bearing capacity of its undamaged counterpart. The hysteresis curves were featured by the inverse "S" shape, indicating good bearing capacity and hysteresis performance. The deformation capacity of the damaged FSTS RC structure retrofitted by the SLRDs met the corresponding codified requirements for the case of the maximum considered earthquake, as set out in the Chinese seismic design code. The stability of the FSTS RC structure retrofitted by the SLRDs, which was revealed by the developed stains of the RC frame and transfer slab, was improved compared with the undamaged FSTS RC structure.

Key technologies research on the response of a double-story isolated structure subjected to long-period earthquake motion

  • Liang Gao;Dewen Liu;Yuan Zhang;Yanping Zheng;Jingran Xu;Zhiang Li;Min Lei
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.17-30
    • /
    • 2024
  • Earthquakes can lead to substantial damage to buildings, with long-period ground motion being particularly destructive. The design of high-performance building structures has become a prominent focus of research. The double-story isolated structure is a novel type of isolated structure developed from base isolated structure. To delve deeper into the building performance of double-story isolated structures, the double-story isolated structure was constructed with the upper isolated layer located in different layers, alongside a base isolated structure for comparative analysis. Nonlinear elastoplastic analyses were conducted on these structures using different ground motion inputs, including ordinary ground motion, near-field impulsive ground motion, and far-field harmonic ground motion. The results demonstrate that the double-story isolated structure can extend the structural period further than the base isolated structure under three types of ground motions. The double-story isolated structure exhibits lower base shear, inter-story displacement, base isolated layer displacement, story shear, and maximum acceleration of the top layer, compared to the base isolated structure. In addition, the double-story isolated structure generates fewer plastic hinges in the frame, causes less damage to the core tube, and experiences smaller overturning moments, demonstrating excellent resistance to overturning and a shock-absorbing effect. As the upper isolated layer is positioned higher, the compressive stress on the isolated bearings of the upper isolated layer in the double-story isolated structure gradually decreases. Moreover, the compressive stress on the isolated bearings of the base isolated layer is lower compared to that of the base isolated structure. However, the shock-absorbing capacity of the double-story isolated structure is significantly increased when the upper isolated layer is located in the middle and lower section. Notably, in regions exposed to long-period ground motion, a double-story isolated structure can experience greater seismic response and reduced shock-absorbing capacity, which may be detrimental to the structure.

The seismic performance of steel pipe-aeolian sand recycled concrete columns

  • Yaohong Wang;Kangjie Chen;Zhiqiang Li;Wei Dong;Bin Wu
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.77-86
    • /
    • 2024
  • To investigate the seismic performance of steel pipe-aeolian sand recycled concrete columns, this study designed and produced five specimens. Low-cycle repeated load tests were conducted while maintaining a constant axial compression ratio. The experiment aimed to examine the impact of different aeolian sand replacement rates on the seismic performance of these columns. The test results revealed that the mechanical failure modes of the steel pipe-recycled concrete column and the steel pipe-aeolian sand recycled concrete column were similar. Plastic hinges formed and developed at the column foot, and severe local buckling occurred at the bottom of the steel pipe. Interestingly, the bulging height of the damaged steel pipe was reduced for the specimen mixed with an appropriate amount of wind-deposited sand under the same lateral displacement. The hysteresis curves of all five specimens tested were relatively full, with no significant pinching phenomenon observed. Moreover, compared to steel tube-recycled concrete columns, the steel tube-aeolian sand recycled concrete columns exhibited improved seismic energy dissipation capacity and ductility. However, it was noted that as the aeolian sand replacement rate increased, the bearing capacity of the specimen increased first and then decreased. The seismic performance of the specimen was relatively optimal when the aeolian sand replacement rate was 30%. Upon analysis and comparison, the damage analysis model based on stiffness and energy consumption showed good agreement with the test results and proved suitable for evaluating the damage degree of steel pipe-wind-sand recycled concrete structures.