• Title/Summary/Keyword: hindrance

Search Result 382, Processing Time 0.031 seconds

Immobilization of Homogeneous Catalyst on Functionalized Carbon Nanotube via 1,3-Dipolar Cycloaddition Reaction and its Ethylene Polymerization (1,3-Dipolar cycloaddition 반응을 통해 기능화된 carbon nanotube 표면 위에 균일계 촉매 담지 및 에틸렌 중합)

  • Lee, Jeong Suk;Lee, Se Young;Lee, Jin Woo;Ko, Young Soo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.574-581
    • /
    • 2016
  • In this study, CNT functionalized with pyrrolidine ring via 1,3-dipolar cycloaddition reaction with various amino acid and aldehyde was synthesized. Metallocene was subsequently immobilized on the functionalized CNT and CNT/polyethylene composite was prepared via in-situ ethylene polymerization. The polymerization activities of metallocene supported on CNT functionalized with glycine and benzaldehyde (Gly+BA-CNT) were similar to those of metallocene supported on CNT functionalized with N-benzyloxycarbonylglycine and paraformaldehyde (Z-Gly+PFA-CNT) although its Zr content was lower than that of Z-Gly+PFA-CNT. In the case of metallocene supported on Z-Gly+PFA-CNT, the even distribution of active sites hindered the diffusion of ethylene monomer and cocatalyst MAO due to steric hindrance during ethylene polymerization. Compared to polyethylene produced from homogeneous metallocene catalysts, CNT/PE composites had a higher initial degradation temperature ($T_{onset}$) and maximum mass loss temperature ($T_{max}$). It suggests that pyrrolidine functionalized CNT is uniformly dispersed and strongly interacted with the PE matrix, enhancing the thermal stability of PE.

Syntheses and Solvolysis of Biological Active 1-(Methacryloyloxymethyl)-5-fluorouracil and Its Polymers (생물활성을 갖는 1-메타크릴로일옥시메틸-5-플루오로우라실 및 그 중합체의 합성과 가용매반응)

  • Lee, Neung-Ju;Oh, Sang-Hoon;Ha, Chang-Sik;Lee, Jin-Kook;Cho, Won-Jei
    • Applied Chemistry for Engineering
    • /
    • v.1 no.2
    • /
    • pp.190-196
    • /
    • 1990
  • The biological active monomer, 1-(methacryloyloxymethyl)-5-fluorouracil(MAOMFU) was synthesized from 2, 4-bis(trimethylsilyloxy)-5-fluoropyrimidine. Poly(MAOMFU) poly(1-methacryloyloxymethyl-5-f1uorouracil-co-methyl methacrylate), and poly(MAOMFU-co-MMA) were also obtained by radical polymerization at $60^{\circ}C$. The monomer reactivity ratios, $r_1$ and $r_2$ were determined by $Kelen-T\ddot{u}d\ddot{o}s$ method ; $r_1(MAOMFU)=0.72$, and $r_2(MMA)=1.24$. These reactivity values imply that the copolymerization was mainly affected by the steric hindrance of MAOMFU. It was found from kinetic measurements that the rate constants of solvolysis are given as $6.42{\times}10^{-5}sec^{-1}$ and $7.40{\times}10^{-6}sec^{-6}$, respectively, for MAOMFU and poly(MAOMFU).

  • PDF

Effect of Magneto-acoustic Emission of Reactor Pressure Vessel Materials Irradiated by Neutrons (중성자에 조사된 원자로 압력용기 재료(SA508)의 Magneto-acoustic emission 효과)

  • Ok, Chi-Il;Lee, Jong-Kyu;Park, Duck-Gun;Hong, Jun-Hwa;Kim, Jang-Whan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.6
    • /
    • pp.433-438
    • /
    • 1999
  • Magneto-acoustic emission (MAE) energy and hardness were measured in the reactor pressure vessel steel (SA508 Steel) for the various neutron fluence, irradiated dose up to $10^{18}n/cm^2$. The hardness was nearly a constant up to $10^{16}n/cm^2$, but it was rapidly increased with an increase of the neutron irradiation above $10^{17}n/cm^2$. It may be considered that the increase of hardness is due to the hindrance of dislocation motion induced defect clusters by irradiation. On the other hand. the MAE energy was slowly decreased as the neutron irradiation increased up to $10^{16}n/cm^2$ and it was rapidly decreased with an increase of the neutron irradiation above $10^{17}n/cm^2$. The decrease of the MAE energy may be considered as an increase of the defect clusters which is very sensitive to the $90^{\circ}$ domain wall motion. Furthermore, the change of MAE energy and hardness had nearly a linear relationship. but the change of MAE energy was more significant than the change of the hardness. Therefore, MAE may be considered as a very useful technique for the nondestructive evaluation of irradiation damage.

  • PDF

Sustained Release Matrix Tablet Containing Sodium Alginate and Excipients (알긴산나트륨 및 첨가제를 함유한 서방성 매트릭스 정제)

  • Shin, Sung-I;Lee, Beom-Jin;Lee, Tae-Sub;Heo, Bo-Uk;Ryu, Seung-Goo
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.3
    • /
    • pp.187-192
    • /
    • 1996
  • The matrix tablet containing sodium alginate and $CaHPO_4$ can release drugs in a controlled fashion from hydrogel with gelling and swelling due to their interaction as water penetrates the matrices of the tablet. The purpose of this study was to evaluate release characteristics of the matrix tablet varying the amount of sodium alginate, $CaHPO_4$ and other excipients such as chitosan, hydroxypropyl methylcellulose (HPMC) and $Eudragit^{\circledR}$ RS100 in the simulated gastric and intestinal fluid. The practically soluble ibuprofen was used as a model drug. The release profiles of matrix tablet in the gastric fluid as a function of sodium alginate/$CaHPO_4$ ratio was not pronounced because of low solubility of drug and stability of alginate matrices. However, release rate of drug from the matrix tablet in the intestinal fluid was largely changed when sodium alginate/$CaHPO_4$ ratio was increased, suggesting that the ratio of sodium alginate/$CaHPO_4$ was an important factor to control the gelling and swelling of the matrix tablet. The incorporation of other excipients into the matrix tablet also influenced the release rate of drug. The chitosan and HPMC decreased the release rate of drug. No release of drug was occurred when $Eudragit^{\circledR}$ RS100 was added into the tablet. The retarded release of matrix tablet when excipients were added resulted from the hindrance of swelling and gelling of the matrix tablet containing sodium alginate and $CaHPO_4$. The hardness and bulk density of the matrix tablet was not correlated with release rate of drug in the study. From these findings, the ratio of sodium alginate and $CaHPO_4$ in the matrix tablet in addition to incorporation of excipients could be very important to control the release rate of drug in dosage form design.

  • PDF

Effects of NaCl/H3PO4 Flame Retardant Treatment on Lyocell Fiber for Thermal Stability and Anti-oxidation Properties (NaCl/H3PO4 내염화 처리가 라이오셀 섬유의 열 안정 및 내산화 특성에 미치는 영향)

  • Kim, Eun Ae;Bai, Byong Chol;Jeon, Young-Pyo;Lee, Chul Wee;Lee, Young-Seak;In, Se Jin;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.418-424
    • /
    • 2014
  • The improved thermal stability and anti-oxidation properties of Lyocell fiber were studied based on flame retardant treatment by using NaCl/$H_3PO_4$ solution. The optimized conditions of flame retardant treatment were studied on various maxing ratio of NaCl and $H_3PO_4$ and the mechanism was proposed through experimental results of thermal stability anti-oxidation. The IPDT (integral procedural decomposition temperature), LOI (limited oxygen index) and $E_a$ (activation energy) increased 23, 30 and 24% respectively via flame retardant treatment. It is noted that thermal stability and anti-oxidation improved based on char and carbon layer formation by dehydrogenation and dissociation of C-C bond resulting the hindrance of oxygen and heat energy into polymer resin. The optimized conditions for efficient flame retardant property of Lyocell fiber were provided using NaCl/$H_3PO_4$ solution and the mechanism was also studied based on experimental results such as IDT (initial decomposition temperature), IPDT, LOI and $E_a$.

Na3PO4 Flame Retardant Treatment on Lyocell Fiber for Thermal Stability and Anti-oxidation Properties (라이오셀의 열 안정 및 내산화 특성 향상을 위한 Na3PO4 내염화 처리)

  • Kim, Hyeong Gi;Kim, Eun Ae;Lee, Young-Seak;In, Se Jin
    • Fire Science and Engineering
    • /
    • v.29 no.2
    • /
    • pp.25-32
    • /
    • 2015
  • The improved thermal stability and anti-oxidation properties of lyocell fiber were studied based on flame retardant treatment by using $Na_3PO_4$ solution. The optimized conditions of flame retardant treatment were studied on various concentrations of $Na_3PO_4$ and the mechanism was proposed through experimental results of thermal stability and anti-oxidation. The integral procedural decomposition temperature (IPDT), limiting oxygen index (LOI) and activation energy ($E_a$) increased 30, 160% respectively via flame retardant treatment. It is noted that thermal stability and anti-oxidation improved based on char and carbon layer formation by dehydrogenation and dissociation of C-C bond resulting the hindrance of oxygen and heat energy into polymer resin. The optimized conditions for efficient flame retardant property of lyocell fiber were provided using $Na_3PO_4$ solution and the mechanism was also studied based on experimental results such as initial decomposition temperature (IDT), IPDT, LOI and $E_a$.

Development and Applications of Pore-filled Ion-exchange Membranes (세공충진 이온교환막의 개발 및 응용)

  • Kim, Do-Hyeong;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.28 no.5
    • /
    • pp.307-319
    • /
    • 2018
  • Ion-exchange membrane (IEM) has fixed charge groups and is a separation membrane which is capable of selectively transporting ions of the opposite polarity. Recently, the interest in IEMs has been increasing as the importance of the desalination and energy conversion processes using them as the key components has increased. Since the IEMs determine the efficiency of the above process, it is necessary to improve the separation performance and durability of them and also to lower the expensive membrane price, which is a hindrance to the widening application of the IEM process. Therefore, it is urgent to develop high-performance and low-cost IEMs. Among various types of IEMs, pore-filled membranes prepared by filling ionomer into a porous polymer substrate are intermediate forms of homogeneous membranes and heterogeneous membranes. The production cost would be cheap like the case of heterogeneous membranes because of the use of inexpensive supports and the reduction of the amount used of raw materials, and at the same time, they exhibit excellent electrochemical characteristics close to homogeneous membranes. In this review, major research and development trends of pore-filled IEMs, which are attracting attention as high-performance and low-cost IEMs, have been summarized and reported according to the application fields.

Degradation Characteristics of Carbon Dioxide Absorbents with Different Chemical Structures (상이한 화학적 구조를 가진 이산화탄소 흡수제의 열화특성)

  • Kim, Jun-Han;Lee, Ji-Hyun;Jang, Kyung-Ryong;Shim, Jae-Goo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.883-892
    • /
    • 2009
  • We evaluated the degradation properties of various alkanolamine absorbents (MEA, AMP, DEA, and MDEA) having different chemical structures for $CO_2$ capture. The degradation of $CO_2$ absorbent in general was known to be caused by oxygen which is in flue gas and by heat source, respectively. To analyze the effect of $CO_2$ and $O_2$ on degree of degradation, we conducted a variety of experiments at $30^{\circ}C$ and $60^{\circ}C$ (oxidative degradation) and $130^{\circ}C$ and $150^{\circ}C$ (thermal degradation), respectively. DEA showed the worst property for oxidative degradation in the presence of oxygen among the alkanolamine absorbents. In the case of thermal degradation, the degradation of absorbent was occurred for most of absorbents at $150^{\circ}C$. Among these absorbents, MEA and DEA gave the worst results. As a result, AMP which is a primary amine and having a steric hindrance showed the best result through the degradation test. But, the degradation of absorbent proceeded easily in the case of DEA which is a secondary amine and having 2 OH groups in terminal position. Consequently, we have evaluated the degree of degradation of various absorbents having different chemical structures to give the basic data for the development of alkanolamine absorbent.

Retrospective Study of the Characteristics and Treatment of Odontomas (치아종의 임상적 특징과 치료에 대한 후향적 연구)

  • Moon, Yujin;Lee, Daewoo;Kim, Jaegon;Baik, Byeongju;Yang, Yeonmi
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.42 no.2
    • /
    • pp.164-171
    • /
    • 2015
  • This study was aimed to retrospectively evaluate the clinical findings and treatments of odontomas in the Korean demographic group. The subject of the present study included 75 odontomas in 74 patients who received treatment from Chonbuk National University Dental Hospital between April 2005 and March 2014. The average age of the subjects were 10.3 years old (range 3 - 23 years old). 42 (56.8%) males and 32 (43.2%) females were in the present study. It was found that compound odontomas were about 4 times more common than complex odontomas. Odontomas equally occurred in both maxillary and mandible. The impaction of permanent teeth (73.3%) was the most common complication of odontomas on adjacent teeth. Most odontomas (96.0%) were surgically removed either to induce spontaneous eruption or to guide orthodontically to occlusion. When the impacted tooth could not be naturally or forcefully erupted to occlusion, it was extracted. Early detection and treatment of odontomas would increase the possible preservation of the impacted tooth by eliminating the source of disturbance. Therefore, this study recommends that periodic radiographic examination from birth until the eruption of the permanent third molar to prevent possible hindrance to the teeth eruption.

Cooling and Antisolvent Crystallization of Potassium Bicarbonate in the Presence of Sterically Hindered Alkanolamines (입체 장애 알카놀아민 혼합 수용액에서 중탄산칼륨 결정의 냉각 반용매 결정화)

  • Jo, Chang Sin;Jung, Taesung;Yoon, Hyoung Chul;Kim, Jong-Nam;Rhee, Young Woo
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.383-389
    • /
    • 2014
  • $CO_2$ absorption processes have a good potential for large scale capture of $CO_2$ but a large amount of absorbing solution has to be regenerated, undesirably increasing the consumption of energy such as sensible heat and latent heat of vaporization. In this study, a cooling crystallization process which would separate the $CO_2$-rich potassium bicarbonate crystals from $CO_2$-lean water was developed to reduce the energy penalty. Sterically hindered alkanolamine additives were used to enhance the $CO_2$ removal efficiency and their antisolvent effect on the crystallization was found in a continuous cooling crystallizer. The production yields of crystals were increased in the sequence of 2-amino-2-methyl-1-propanol (AMP) < 2-amino-2-methyl-1,3-propanediol (AMPD) < 2-amino-2-hydroxymethyl-1,3-propanediol (AHPD), which are related to the number of hydroxyl groups in the additive molecules. Using $^{13}carbon$ nuclear magnetic resonance, the additives favored the formation of bicarbonate ions by steric hindrance effect and increased the supersaturation of $KHCO_3$. It is shown that the additives increase the mean size of crystals and crystal growth rate by increasing supersaturation. The additives are promising for enhancing the $CO_2$ removal efficiency and reducing the regeneration energy cost of $CO_2$ absorbing solution by promoting $KHCO_3$ crystallization.