Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.5.307

Development and Applications of Pore-filled Ion-exchange Membranes  

Kim, Do-Hyeong (Department of Green Chemical Engineering, Sangmyung University)
Kang, Moon-Sung (Department of Green Chemical Engineering, Sangmyung University)
Publication Information
Membrane Journal / v.28, no.5, 2018 , pp. 307-319 More about this Journal
Abstract
Ion-exchange membrane (IEM) has fixed charge groups and is a separation membrane which is capable of selectively transporting ions of the opposite polarity. Recently, the interest in IEMs has been increasing as the importance of the desalination and energy conversion processes using them as the key components has increased. Since the IEMs determine the efficiency of the above process, it is necessary to improve the separation performance and durability of them and also to lower the expensive membrane price, which is a hindrance to the widening application of the IEM process. Therefore, it is urgent to develop high-performance and low-cost IEMs. Among various types of IEMs, pore-filled membranes prepared by filling ionomer into a porous polymer substrate are intermediate forms of homogeneous membranes and heterogeneous membranes. The production cost would be cheap like the case of heterogeneous membranes because of the use of inexpensive supports and the reduction of the amount used of raw materials, and at the same time, they exhibit excellent electrochemical characteristics close to homogeneous membranes. In this review, major research and development trends of pore-filled IEMs, which are attracting attention as high-performance and low-cost IEMs, have been summarized and reported according to the application fields.
Keywords
Ion-exchange membrane; desalination; energy conversion; pore-filled membranes; low-cost;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 S.-J. Seo, B.-C. Kim, K.-W. Sung, J. Shim, J.-D. Jeon, K.-H. Shin, S.-H. Yun, J.-Y. Lee, and S.-H. Moon, "Electrochemical properties of pore-filled anion exchange membranes and their ionic transport phenomena for vanadium redox flow battery applications", J. Membr. Sci., 428, 17 (2013).   DOI
2 M.-A. Park, J. Shim, S.-K. Park, J.-D. Jeon, C.-S. Jin, L. B. Lee, and K.-H. Shin, "Poly(vinylbenzyl chloride-glycidyl methacrylate)/polyethylene composite anion exchange membranes for vanadium redox battery application", Bull. Korean Chem. Soc., 34, 1651 (2013).   DOI
3 D.-H. Kim, J.-S. Park, M. Choun, J. Lee, and M.-S. Kang, "Pore-filled anion-exchange membranes for electrochemical energy conversion applications", Electrochim. Acta, 222, 212 (2016).   DOI
4 J. Kim, Y. Lee, J.-D. Jeon, and S.-Y. Kwak, "Ion-exchange composite membranes pore-filled with sulfonated poly(ether ether ketone) and Engelhard titanosilicate-10 for improved performance of vanadium redox flow batteries", J. Power Sources, 383, 1 (2018).   DOI
5 M. S. Lee, H. G. Kang, J. D. Jeon, Y. W. Choi, and Y. G. Yoon, "A novel amphoteric ion-exchange membrane prepared by the pore-filling technique for vanadium redox flow batteries", RSC Adv., 6, 63023 (2016).   DOI
6 D.-H. Kim, S.-J. Seo, M.-J. Lee, J.-S. Park, S.-H. Moon, Y. S. Kang, Y.-W. Choi, and M.-S. Kang, "Pore-filled anion-exchange membranes for nonaqueous redox flow batteries with dual-metal-complex redox shuttles", J. Membr. Sci., 454, 44 (2014).   DOI
7 A. Kirubakaran, S. Jain, and R. K. Nema, "A review on fuel cell technologies and power electronic interface", Renew. Sust. Energ. Rev., 13, 2430 (2009).   DOI
8 T. Yamaguchi, F. Miyata, and S.-i. Nakao, "Polymer electrolyte membranes with a pore-filling structure for a direct methanol fuel cell", Adv. Mater., 15, 1198 (2003).   DOI
9 B.-Y. Wang, C. K. Tseng, C.-M. Shih, Y.-L. Pai, H.-P. Kuo, and S. J. Lue, "Polytetrafluoroethylene (PTFE)/silane cross-linked sulfonated poly(styreneethylene/butylene-styrene) (sSEBS) composite membrane for direct alcohol and formic acid fuel cells", J. Membr. Sci., 464, 43 (2014).   DOI
10 A. L. Mong, S. Yang, and D. Kim, "Pore-filling polymer electrolyte membrane based on poly(arylene ether ketone) for enhanced dimensional stability and reduced methanol permeability", J. Membr. Sci., 543, 133 (2017).   DOI
11 K. Kim, S.-K. Kim, J. O. Park, S.-W. Choi, K.-H. Kim, T. Ko, C. Pak, and J.-C. Lee, "Highly reinforced pore-filling membranes based on sulfonated poly(arylene ether sulfone)s for high-temperature/low-humidity polymer electrolyte membrane fuel cells", J. Membr. Sci., 537, 11 (2017).   DOI
12 S.-H. Yun, J.-J. Woo, S.-J. Seo, L. Wu, D. Wu, T. Xu, and S.-H. Moon, "Sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) electrolyte membranes reinforced by electrospun nanofiber porous substrates for fuel cells", J. Membr. Sci., 367, 296 (2011).   DOI
13 H. Jung, K. Fujii, T. Tamaki, H. Ohashi, T. Ito, and T. Yamaguchi, "Low fuel crossover anion exchange pore-filling membrane for solid-state alkaline fuel cells", J. Membr. Sci., 373, 107 (2011).   DOI
14 Y. Zhao, H. Yu, F. Xie, Y. Liu, Z. Shao, and B. Yi, "High durability and hydroxide ion conducting pore-filled anion exchange membranes for alkaline fuel cell applications", J. Power Sources, 269, 1 (2014).   DOI
15 A. M. Mika, R. F. Childs, J. M. Dickson, B. E. McCarry, and D. R. Gagnon, "A new class of polyelectrolyte-filled microfiltration membranes with environmentally controlled porosity", J. Membr. Sci., 108, 37 (1995).   DOI
16 W. D. Schroer, "Polymerization of En-sulfur Compounds", Methoden der organischen Chemie, Vol. E 20, Georg Thieme, Stuttgart-New York, 4th ed., 1255 (1987).
17 T. Yamaguchi, F. Miyata, and S.-i. Nakao, "Pore-filling type polymer electrolyte membranes for a direct methanol fuel cell", J. Membr. Sci., 214, 283 (2003).   DOI
18 D.-H. Kim and M.-S. Kang, "Preparation and characterizations of ionomer-coated pore-filled ion-exchange membranes for reverse electrodialysis", Membr. J., 26, 43 (2016).   DOI
19 R. W. Baker, Membrane technology and applications, 3rd ed, John Wiley & Sons Ltd., West Sussex (2012).
20 N. P. Berezina, N. A. Kononenko, O. A. Dyomina, and N. P. Gnusin, "Characterization of ion-exchange membrane materials: Properties vs structure", Adv. Colloid Interface Sci., 139, 3 (2008).   DOI
21 W. Jiang, R. F. Childs, A. M. Mika, and J. M. Dickson, "Pore-filled cation-exchange membranes containing poly(styrenesulfonic acid) gels", Desalination, 159, 253 (2003).   DOI
22 X. Zhang, S. Xu, J. Zhou, W. Zhao, S. Sun, and C. Zhao, "Anion-responsive poly(ionic liquid)s gating membranes with tunable hydrodynamic permeability", ACS App. Mater. Interfaces, 9, 32237 (2017).   DOI
23 W. Tang, D. He, C. Zhang, and P. Kovalsky, T. D. Waite, "Comparison of faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes", Water Res., 120, 229 (2017).   DOI
24 D. M. Stachera, R. F. Childs, A. M. Mika, and J. M. Dickson, "Acid recovery using diffusion dialysis with poly(4-vinylpyridine)-filled microporous membranes", J. Membr. Sci., 148, 119 (1998).   DOI
25 D.-H. Kim, J.-H. Park, S.-J. Seo, J.-S. Park, S. Jung, Y. S. Kang, J.-H. Choi, and M.-S. Kang, "Development of thin anion-exchange pore-filled membranes for high diffusion dialysis performance", J. Membr. Sci., 447, 80 (2013).   DOI
26 V. Chavan, C. Agarwal, V. C. Adya, and A. K. Pandey, "Hybrid organic-inorganic anion-exchange pore-filled membranes for the recovery of nitric acid from highly acidic aqueous waste streams", Water Res., 133, 87 (2018).   DOI
27 L. Wang and S. Lin, "Membrane capacitive deionization with constant current vs constant voltage charging: Which is better", Environ. Sci. Technol., 52, 4051 (2018).   DOI
28 J. S. Kim, Y. S. Jeon, and J. W. Rhim, "Application of poly(vinyl alcohol) and polysulfone based ionic exchange polymers to membrane capacitive deionization for the removal of mono- and divalent salts", Sep. Purif. Technol., 157, 45 (2016).   DOI
29 Y. S. Jeon, S. I. Cheong, and J. W. Rhim, "Design shape of CDI cell applied with APSf and SPEEK and performance in MCDI", Macromol. Res., 25, 712 (2017).   DOI
30 D.-H. Kim, Y.-E. Choi, J.-S. Park, and M.-S. Kang, "Development and application of cation-exchange membranes including chelating resin for efficient heavy-metal ion removal", Membr. J., 27, 129 (2017).   DOI
31 H.-B. Song, H.-N. Moon, D.-H. Kim, and M.-S. Kang, "Preparation and electrochemical applications of pore-filled ion-exchange membranes with well-adjusted cross-linking degrees: Part II. Reverse electrodialysis", Membr. J., 27, 441 (2017).   DOI
32 Q. Qiu, J.-H. Cha, Y.-W. Choi, J.-H. Choi, J. Shin, and Y.-S. Lee, "Preparation of polyethylene membranes filled with crosslinked sulfonated polystyrene for cation exchange and transport in membrane capacitive deionization process", Desalination, 417, 87 (2017).   DOI
33 D.-H. Kim, Y.-E. Choi, J.-S. Park, and M.-S. Kang, "Capacitive deionization employing pore-filled cation-exchange membranes for energy-efficient removal of multivalent cations", Electrochim. Acta, 295, 164 (2019).   DOI
34 E. Brauns, "Salinity gradient power by reverse electrodialysis: Effect of model parameters on electrical power output", Desalination, 237, 378-391 (2009).   DOI
35 H.-K. Kim, M.-S. Lee, S.-Y. Lee, Y.-W. Choi, N.-J. Jeong, and C.-S. Kim, "High power density of reverse electrodialysis with pore-filling ion exchange membranes and a high open-area spacer", J. Mater. Chem. A, 3, 16302 (2015).   DOI
36 M.-S. Lee, H.-K. Kim, C.-S. Kim, H.-Y. Suh, K.-S. Nahm, and Y.-W. Choi, "Thin pore-filled ion exchange membranes for high power density in reverse electrodialysis: Effects of structure on resistance, stability, and ion selectivity", ChemistrySelect, 2, 1974 (2017).   DOI
37 M. Skyllas-Kazacos and F. Grossmith, "Efficient vanadium redox flow cell", J. Electrochem. Soc., 134, 2950 (1987).   DOI
38 B. Jiang, L. Yu, L. Wu, D. Mu, L. Liu, J. Xi, and X. Qiu, "Insights into the impact of the Nafion membrane pretreatment process on vanadium flow battery Performance", ACS Appl. Mater. Interfaces, 8, 12228 (2016).   DOI
39 W. Wang, Q. Luo, B. Li, X. Wei, L. Li, and Z. Yang, "Recent progress in redox flow battery research and development", Adv. Funct. Mater., 23, 970 (2013).   DOI
40 C. Ding, H. Zhang, X. Li, T. Liu, and F. Xing, "Vanadium flow battery for energy storage: prospects and challenges", J. Phys. Chem. Lett., 4, 1281 (2013).   DOI
41 S. C. Chieng, M. Kazacos, and M. S. Kazacos, "Preparation and evaluation of composite membrane for vanadium redox battery application", J. Power Sources, 39, 11 (1992).   DOI
42 D. Chen, M. A. Hickner, E. Agar, and E. C. Kumbur, "Optimized anion exchange membranes for vanadium redox flow batteries", ACS Appl. Mater. Interfaces, 5, 7559 (2013).   DOI