Browse > Article
http://dx.doi.org/10.14478/ace.2014.1064

Effects of NaCl/H3PO4 Flame Retardant Treatment on Lyocell Fiber for Thermal Stability and Anti-oxidation Properties  

Kim, Eun Ae (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT))
Bai, Byong Chol (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT))
Jeon, Young-Pyo (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT))
Lee, Chul Wee (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT))
Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
In, Se Jin (Department of Fire and Disaster Protection Engineering, Woosong University)
Im, Ji Sun (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT))
Publication Information
Applied Chemistry for Engineering / v.25, no.4, 2014 , pp. 418-424 More about this Journal
Abstract
The improved thermal stability and anti-oxidation properties of Lyocell fiber were studied based on flame retardant treatment by using NaCl/$H_3PO_4$ solution. The optimized conditions of flame retardant treatment were studied on various maxing ratio of NaCl and $H_3PO_4$ and the mechanism was proposed through experimental results of thermal stability anti-oxidation. The IPDT (integral procedural decomposition temperature), LOI (limited oxygen index) and $E_a$ (activation energy) increased 23, 30 and 24% respectively via flame retardant treatment. It is noted that thermal stability and anti-oxidation improved based on char and carbon layer formation by dehydrogenation and dissociation of C-C bond resulting the hindrance of oxygen and heat energy into polymer resin. The optimized conditions for efficient flame retardant property of Lyocell fiber were provided using NaCl/$H_3PO_4$ solution and the mechanism was also studied based on experimental results such as IDT (initial decomposition temperature), IPDT, LOI and $E_a$.
Keywords
lyocell fabrics; flame retardant treatment; thermal stability; anti-oxidation; thermo-gravimetric analysis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 D. Cho, H. S. Kang, C. Park, H. S. Ha, B. I. Yoon, and K. S. Kim, Improvement of thermal and mechanical properties of carbon fiber/phenolic composites by using $H_3PO_4$-coated carbon fibers, Polymer(Korea), 20, 650-657 (1996).
2 D. W., Van Krevelen, Some basic aspects of flame resistance of polymeric materials, Polymer, 16, 615-620 (1975).   DOI   ScienceOn
3 Y. S. Lee and Y. H. Kim, Anti-oxidation properties of surface treatment carbon fibers with pyrolytic carbon and silicon carbide, Appl. Chem. Eng., 11, 910-916 (2000).
4 S. J. Park, F. L. Jin, and J. R. Lee, Thermal and mechanical properties of tetrafunctional epoxy resin toughened with epoxidized soybean oil, Mater. Sci. Eng. A, 374, 109-114 (2004).   DOI   ScienceOn
5 S. J. Park, H. Y. Lee, M. j. Han, and S. K. Hong, Thermal and mechanical interfacial properties of the DGEBA/PMR-15 blend system, J. Colloid interface Sci., 270, 288-294 (2004).   DOI   ScienceOn
6 S. Liodakis, T. Kakardakis, S. Tzortzakou, and V. Tsapara., How to measure the particle ignitability of forest species by TG and LOI, Thermochim. Acta, 477, 16-20 (2008).   DOI   ScienceOn
7 Y. Sekiguchi, J. S. Frye, and F. Shafizadeh, Structure and formation of cellulosic chars, J. Appl. Polym. Sci., 28, 3513-3525 (1983).   DOI   ScienceOn
8 B. G. Kim, J. K. Sohng, K. K. Liou, and H. C. Lee, Enhanced fiber structure of carbonized cellulose by purification, Appl. Chem. Eng., 16, 257-261 (2005).
9 W. E. Hills, Wood and biomass ultrastructure. In: R. P. Overend, T. A. Miline, L. K. Mudge (eds.). Fundamentals of Thermochemical Biomass Conversion, 1-33, Elsevier, London, UK (1985).
10 Q. Wu, N. Pan, K. Deng, and D. Pan, Thermogravimetry-mass spectrometry on the pyrolysis process of Lyocell fibers with and without catalyst, Carbohydr. polym., 72, 222-228 (2008).   DOI   ScienceOn
11 C. B. Kim, W. J. Seo, O. D. Kwon, and S. B. Kim, Flame retardancy novel phosphorus flame retardant for polyurethane foam, Appl. Chem. Eng., 22, 540-544 (2011).
12 J. B. Donnet and R. C. Bansal, Carbon Fibers, 3rd ed., 12-27, Marcel Dekker, NY, USA (1984).
13 X. Huang, Fabrication and properties of carbon fibers, Materials, 2, 2369-2403 (2009).   DOI
14 A. D. Cato and D. D. Edie, Flow behavior of mesophase pitch, Carbon, 41, 1411-1417 (2003).   DOI   ScienceOn
15 O. P. Bahl and L. M. Manocha, Characterization of oxidized pan fibers, Carbon, 12, 417-423 (1974).   DOI   ScienceOn
16 D. J. Johnson and C. N. Tyson, The fine structure of graphitized fibers, J. Phys. D, 2, 787-795 (1969).   DOI   ScienceOn
17 J. B. Donnet, S. Rebouillat, T. K. Wang, and J. C. M. Peng, Carbon Fibers., 3rd ed., 1-85, Marcel Dekker, NY, USA (1998).
18 L. H. Peebles, Carbon Fibers: Formation, Structure, and Properties, 1st ed., 3, CRC Press, FL, USA (1995).
19 C. R. Woodings, The development of advanced cellulosic fibers, Int. J. Biol. Macromol., 17, 305-309 (1995).   DOI   ScienceOn
20 J. Y. Lee, Fabrication and Properties of Novel Lyocell/Poly (lactic acid) and Lyocell/Poly (butylene suc-cinate) Biocomposite and Lyocell-Based Carbon Fabric/Phenolic Composites, M.S Dissertation, Kumoh National Institute of Technology, Gumi, Korea (2009).
21 M. J. Antal, Biomass Pyrolysis : a Review of the literature. Part I Carbohydrate pyrolysis. In: K. W., Boer, J. A., Duffie (eds.). Advances in Solar Energy, 61-111, American solar energy society, Boulder, USA (1983).
22 C. Cho, D. Cho, J. K. Park, and J. Y. Lee, Effect of isothermal stabilization process and ultrasonic cleaning on the characteristics of rayon fabrics, Appl. J. Adhes. Interface, 14, 21-27 (2013).   DOI
23 C. D. Doyle, Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis, Anal. Chem., 33, 77-79 (1961).   DOI