• Title/Summary/Keyword: highway

Search Result 3,704, Processing Time 0.024 seconds

Performance and Economic Analysis for Rut-resistance Pavement Considering Life Cycle Cost (LCC를 고려한 내유동포장의 공용성 및 경제성 분석에 관한 연구)

  • Do, Myungsik;Han, Daeseok;Yoo, Inkyoon;Lee, Soohyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.783-796
    • /
    • 2006
  • Rut-resistance pavement is adopted to prevent pavement from plastic deformation since 1998. The objective of this paper is to investigate performance and economic efficiency between rut-resistance pavement and conventional hot-mix asphalt(HMA) on national highway. The pavement deterioration models incorporated in HDM-4 have been calibrated and adapted to local road conditions based on observed pavement rut-depth data. Based on calibration result of HDM-4, the economic evaluation including road agency cost and user cost is performed for 34 road pavement sections. Furthermore, we presented optimal timing for maintenance and performance levels subject to different budget. We found that rut-resistance pavement is performing better than conventional hot-mix asphalt in most road sections. Furthermore, we confirmed that the application of HDM-4 is useful for pavement project planning and evaluation. More investigation is needed to enlarge the scope of the pavement data and to explore more deeply socio-environmental cost and delay cost.

Minimum Design Thickness of Prestressed Concrete Deck Slabs for Composite Two-Girder Bridges (강합성 2거더교 프리스트레스트 바닥판의 설계 최소두께)

  • Hwang, Hoon Hee;Joh, Changbin;Kwark, Jong Won;Lee, Yong Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.183-190
    • /
    • 2006
  • Minimizing the self weight of long-span deck slabs is one of the key factors for the practical and economic design of a composite two-girder bridge. In this paper, the minimum design thickness and rebar details of prestressed concrete deck slabs for composite two-girder bridges with girder span length from 4 m to 12 m are studied based on the safety and serviceability. The bridge deck slab with minimum thickness is designed as a one-way slab considering orthotropic behavior. Then fatigue safety of the deck slab is examined. Serviceability requirements for the deck slab such as deflection and crack width limits are also examined. The result shows that rebars with diameter less than 16 mm is recommended for the improved fatigue behavior, and, for the deck slab with span length longer than 8 m, the deflection limit governs the minimum design thickness. The result also shows that, for the deck slab with span length longer than 4 m, the distribution rebar requirement in the current Korea Highway Bridge Design Code is not sufficient to maintain the structural continuity in bridge axis as expected from the deck slab with span length shorter than 3 m.

The Operation Analysis of Signalized Intersections Using ICU Method (ICU 방법을 활용한 신호교차로 운영분석)

  • Kim, Young Chan;Jeon, Jae Hyeon;Jeong, Young Je;Kim, Eun Jeoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.41-48
    • /
    • 2009
  • The capacity analysis of signalized intersection usually includes a HCM method used at home and abroad and a ICU method this study presents. The HCM method focuses on operation analysis measuring an intersection's delay in terms of given traffic volume, signal operation, and intersection structure data. This method includes planning and design analysis, but these analyses are complex due to being possible through repetitive operation analysis. However the ICU method is a powerful tool for planning and design analysis, because these are possible through brief traffic volume and geometry structure data and consider minimum green time. In this study, the authors studied the ICU method and compared the HCM and ICU by analyzing traffic volume scenarios. Also to consider effectiveness for application of the ICU method, the authors applied the ICU to capacity analysis of intersections on urban arterial for setting major intersection and effect analysis for changing crosswalk type, the number of lane, lane use and operation form of left turn. The result of the analyses shows that the ICU method can measure correct capacity of intersection consist of a broad road in urban area, and is effective for planning and design analysis. This study is expected that traffic experts can grasp correct intersection's capacity and carry out a proper planning or improvement by applying the ICU method to planning and design analysis.

Development of 4D System based on New Methodology for Visualizing Construction Schedule Data for Civil Engineering Projects (토목시설물 공사관리 시각화를 취한 4D시스템 적용방안)

  • Kang, Leen Seok;Jee, Sang Bok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.95-103
    • /
    • 2006
  • One of the main functions of the 4D system includes visualizing numerical schedule data in construction. The existing 4D tools have an excellent function for simulating building projects that all activities are progressed according to vertical work zone. However, it is not easy to implement all of it in the civil engineering project because the construction activities of highway and railway projects are progressed on the horizontal work zone and the 4D simulation for those projects should include earthwork objects that depend on the natural ground condition. This study suggests a new methodology for improving those limitations of 4D system for the civil engineering project and develops a new system by the suggested methodology. To verify the developed system, this study attempts to simulate 4D object for horizontal elements such as earthwork, paving work and tunneling work. The morphing and multi-texturing techniques developed in the study can be new approaches to simulate 4D object for the earthwork such as cutting and banking whose activities are progressed on the natural ground condition. The research results can be expected as a draft function for improving the application of 4D system in civil engineering projects.

Estimating the Level-Of-Service for Walkways by Using Fuzzy Approximate Reasoning (퍼지근사추론을 이용한 보행 서비스수준 산정)

  • Kim, Kyung Whan;Park, Sang Hoon;Kim, Daehyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2D
    • /
    • pp.241-250
    • /
    • 2006
  • Although walking is an important transport mode which should be promoted, realistic studies about walking is not sufficient. Especially, due to the transportation planning oriented toward automobile, there is not realistic analysis method for walking in the Highway Capacity Manual. Therefore, in this study the fuzzy approximate reasoning was employed to build a model for the analysis of walkways service level. For the input variable the noise level and brightness as well as the pedestrian flow rate were employed and the output variable was the walking satisfaction degree. The fuzzy models were constructed for daytime and nighttime separately. The forecastability analysis for the models were conducted using $R^2$, MAE and MSE. The values of them for the daytime model are 0.802, 0.729 and 0.735 respectively and the values for nighttime are 0.893, 0.878 and 0.860 respectively, so it can be said that the models explain the real situation well. As a result of this study, it can be concluded that the noise level has stronger effects to walking satisfaction then the brightness in night.

Field Evaluation of Traffic Wandering Effect on Asphalt Pavement Responses (차량의 횡방향 주행이격에 의한 아스팔트 콘크리트 포장의 응답특성 분석)

  • Seo, Youngguk;Kwon, Soon-Min;Lee, Jae-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.453-459
    • /
    • 2006
  • This paper presents an experimental evaluation of wandering effect on asphalt concrete pavement responses. A laser-based wandering system has been developed and its performance is verified under various field conditions. The portable wandering system composed of two laser sensors with Position Sensitive Devices can allow one to measure the distance between laser sensors and tire edges of moving vehicle. Therefore, lateral position of each wheel on the pavement can be determined in a real time manner. Pavement responses due to different loading paths are investigated using a roll over test which is carried out on one of asphalt surfaced pavements in the Korea Highway Corporation test road. The pavement section (A5) consists of 5 cm thick surface course; 7 cm intermediate course; and 18 mm base course, and is heavily instrumented with strain gauges, vertical soil pressure cells and thermo-couples. From the center of wheel paths, seven equally-spaced lateral loading paths are carefully selected over an 140 cm wandering zone. Test results show that lateral horizontal strains in both surface and intermediate courses are mostly compressive right under the loading path and tensile strains start to develop as the loading offset becomes 40 cm from the wheel path. The development of the vertical stresses in the top layers of subbase and anti-frost is found to be minimal once the loading offset becomes 50 cm.

Field Validation of Earthwork Compaction Quality Control Based on Intelligent Compaction Technology (지능형 다짐 기술 기반 토공사 다짐 품질관리 실증 연구)

  • Baek, Sung-Ha;Kim, Jin-Young;Kim, Jisun;Cho, Jin-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.11
    • /
    • pp.85-95
    • /
    • 2023
  • This study implemented intelligent compaction technology at the construction site of the AY Highway in Gyeonggi Province, with a focus on obtaining the representative intelligent compaction value, CMV. The target CMV for quality control was established through trial construction, and the validation of the compaction quality control process based on intelligent compaction was conducted. The optimal approach for determining the target CMV was confirmed to be through linear regression of the average CMV measured within a 5-m radius from the plate load testing location. Upon assessing compaction quality against the target CMV, it was observed that the quality criteria outlined in the domestic intelligent compaction standard were met. However, the criteria outlined in Austria and the United States were not satisfied. Notably, indicators related to the variability of compaction quality did not meet the specified criteria, suggesting a stringent standard compared to the observed variability of CMV, ranging from 17% to 55%. Consequently, it is recommended to conduct additional field tests to further validate the compaction quality control process based on intelligent compaction. This will aid in confirming and enhancing the appropriateness of the regulations stipulated in each standard.

Development of Traffic Accident Rate to Improve the Reliability of the Valuation of Accident Costs Savings on National Highways (국도 사고비용 산정의 신뢰도 향상을 위한 사고원단위 개선)

  • Wanhyoung Cho;Kijung Kum
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.19-29
    • /
    • 2023
  • The accident rate in South Korea is simply classified according to the road type and the number of lanes, but other countries apply various factors affect accidents. In this study, national highways where accidents occurred were divided into urban, rural, older, and modern roads using TAAS(Traffic Accident Analysis System) data, and a model of accident costs savings is suggested. As a result of analyzing 1,416.2 km, the fatality rate(person/100mil-vehicle·km) was 4.21 for urban-older, 1.37 for urban-modern, 2.18 for rural-older, and 0.99 for rural-modern roads. The rates of urban roads had a higher result than rural. The injury rate(person/100mil-vehicle·km) for urban-older was 182.63, that for urban-modern was 103.42, that for rural-older was 67.44, and that for rural-modern road was 42.96, which showed a similar pattern to fatality rates. Accident rates of a modern road were much lower than the KDI Guideline. The benefit of applying the result of this study was calculated and the valuation of accident costs savings is increased from 0.6% to 14.1%, while B/C is improved from 0.626 to 0.724.

Analysis of Driving and Environmental Impacts by Providing Warning Information in C-ITS Vehicles Using PVD (PVD를 활용한 C-ITS 차량 내 경고정보 제공에 따른 주행 및 환경영향 분석)

  • Yoonmi Kim;Ho Seon Kim;Kyeong-Pyo Kang;Seoung Bum Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.224-239
    • /
    • 2023
  • C-ITS (Cooperative-Intelligent Transportation System) refers to user safety-oriented technology and systems that provide forward traffic situation information based on a two-way wireless communication technology between vehicles or between vehicles and infrastructure. Since the Daejeon-Sejong pilot project in 2016, the C-ITS infrastructure has been installed at various locations to provide C-ITS safety services through highway and local government demonstration projects. In this study, a methodology was developed to verify the effectiveness of the warning information using individual vehicle data collected through the Gwangju Metropolitan City C-ITS demonstration project. The analysis of the effectiveness was largely divided into driving behavior impact analysis and environmental analysis. Compliance analysis and driving safety evaluation were performed for the driving impact analysis. In addition, to supplement the inadequate collection of Probe Vehicle Data (PVD) collected during the C-ITS demonstration project, Digital Tacho Graph ( DTG ) data was additionally collected and used for effect analysis. The results of the compliance analysis showed that drivers displayed reduced driving behavior in response to warning information based on a sufficient number of valid samples. Also, the results of calculating and analyzing driving safety indicators, such as jerk and acceleration noise, revealed that driving safety was improved due to the provision of warning information.

Driving Behaivor Optimization Using Genetic Algorithm and Analysis of Traffic Safety for Non-Autonomous Vehicles by Autonomous Vehicle Penetration Rate (유전알고리즘을 이용한 주행행태 최적화 및 자율주행차 도입률별 일반자동차 교통류 안전성 분석)

  • Somyoung Shin;Shinhyoung Park;Jiho Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.30-42
    • /
    • 2023
  • Various studies have been conducted using microtraffic simulation (VISSIM) to analyze the safety of traffic flow when introducing autonomous vehicles. However, no studies have analyzed traffic safety in mixed traffic while considering the driving behavior of general vehicles as a parameter in VISSIM. Therefore, the aim of this study was to optimize the input variables of VISSIM for non-autonomous vehicles through genetic algorithms to obtain realistic behavior. A traffic safety analysis was then performed according to the penetration rate of autonomous vehicles. In a 640 meter section of US highway I-101, the number of conflicts was analyzed when the trailing vehicle was a non-autonomous vehicle. The total number of conflicts increased until the proportion of autonomous vehicles exceeded 20%, and the number of conflicts decreased continuously after exceeding 20%. The number of conflicts between non-autonomous vehicles and autonomous vehicles increased with proportions of autonomous vehicles of up to 60%. However, there was a limitation in that the driving behavior of autonomous vehicles was based on the results of the literature and did not represent actual driving behavior. Therefore, for a more accurate analysis, future studies should reflect the actual driving behavior of autonomous vehicles.