• Title/Summary/Keyword: highlight detection

Search Result 92, Processing Time 0.022 seconds

Improving an index for surface water detection

  • Hu, Yuanming;Paik, Kyungrock
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.144-144
    • /
    • 2022
  • Identifying waterbody from remote sensing images, namely water detection, helps understand continuous redistribution of terrestrial water storage and accompanying hydrological processes. It also allows us to estimate available surface water resources and help effective water management. For this problem, NDWI (Normalized Difference Water Index) and MNDWI (Modified Normalized Difference Water Index) are widely used. Although remote sensing indexes can highlight remote sensing image in the water, the noise and the spatial information of the remote sensing image are difficult to be considered, so the accuracy is difficult to be compared with the visual interpretation (the most accurate method, but it requires a lot of labor, which makes it difficult to apply). In this study, we attempt to improve existing NDWI and MNDWI to better water detection. We establish waterbody database of South Korea first and then used it for assessing waterbody indices.

  • PDF

Small Target Detecting and Tracking Using Mean Shifter Guided Kalman Filter

  • Ye, Soo-Young;Joo, Jae-Heum;Nam, Ki-Gon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.4
    • /
    • pp.187-192
    • /
    • 2013
  • Because of the importance of small target detection in infrared images, many studies have been carried out in this area. Using a Kalman filter and mean shift algorithm, this study proposes an algorithm to track multiple small moving targets even in cases of target disappearance and appearance in serial infrared images in an environment with many noises. Difference images, which highlight the background images estimated with a background estimation filter from the original images, have a relatively very bright value, which becomes a candidate target area. Multiple target tracking consists of a Kalman filter section (target position prediction) and candidate target classification section (target selection). The system removes error detection from the detection results of candidate targets in still images and associates targets in serial images. The final target detection locations were revised with the mean shift algorithm to have comparatively low tracking location errors and allow for continuous tracking with standard model updating. In the experiment with actual marine infrared serial images, the proposed system was compared with the Kalman filter method and mean shift algorithm. As a result, the proposed system recorded the lowest tracking location errors and ensured stable tracking with no tracking location diffusion.

Influence of sharp stiffness variations in damage evaluation using POD and GSM

  • Thiene, M.;Galvanetto, U.;Surace, C.
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.569-594
    • /
    • 2014
  • Damage detection methods based on modal analysis have been widely studied in recent years. However the calculation of mode shapes in real structures can be time consuming and often requires dedicated software programmes. In the present paper the combined application of proper orthogonal decomposition and gapped smoothing method to structural damage detection is presented. The first is used to calculate the dynamic shapes of a damaged structural element using only the time response of the system while the second is used to derive a reference baseline to which compare the data coming from the damaged structure. Experimental verification is provided for a beam case while numerical analyses are conducted on plates. The introduction of a stiffener on a plate is investigated and a method to distinguish its influence from that of a defect is presented. Results highlight that the derivatives of the proper orthogonal modes are more effective damage indices than the modes themselves and that they can be used in damage detection when only data from the damaged structure are available. Furthermore the stiffened plate case shows how the simple use of the curvature is not sufficient when analysing complex components. The combined application of the two techniques provides a possible improvement in damage detection of typical aeronautical structures.

Mass Spectrometry for Metabolome Analysis

  • Wang, Xiaohang;Li, Liang
    • Mass Spectrometry Letters
    • /
    • v.11 no.2
    • /
    • pp.17-24
    • /
    • 2020
  • Metabolomics has become an important research field with many areas of applications ranging from disease biomarker discovery to global biology systems study. A key step in metabolomics is to perform metabolome analysis to obtain quantitative information on metabolic changes among comparative samples. Mass spectrometry (MS) is widely used for highly sensitive detection of many different types of metabolites. In this review, we highlight some of the more commonly used MS techniques for metabolome analysis.

Lane Detection Based on Inverse Perspective Transformation and Kalman Filter

  • Huang, Yingping;Li, Yangwei;Hu, Xing;Ci, Wenyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.643-661
    • /
    • 2018
  • This paper proposes a novel algorithm for lane detection based on inverse perspective transformation and Kalman filter. A simple inverse perspective transformation method is presented to remove perspective effects and generate a top-view image. This method does not need to obtain the internal and external parameters of the camera. The Gaussian kernel function is used to convolute the image to highlight the lane lines, and then an iterative threshold method is used to segment the image. A searching method is applied in the top-view image obtained from the inverse perspective transformation to determine the lane points and their positions. Combining with feature voting mechanism, the detected lane points are fitted as a straight line. Kalman filter is then applied to optimize and track the lane lines and improve the detection robustness. The experimental results show that the proposed method works well in various road conditions and meet the real-time requirements.

Visual Saliency Detection Based on color Frequency Features under Bayesian framework

  • Ayoub, Naeem;Gao, Zhenguo;Chen, Danjie;Tobji, Rachida;Yao, Nianmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.676-692
    • /
    • 2018
  • Saliency detection in neurobiology is a vehement research during the last few years, several cognitive and interactive systems are designed to simulate saliency model (an attentional mechanism, which focuses on the worthiest part in the image). In this paper, a bottom up saliency detection model is proposed by taking into account the color and luminance frequency features of RGB, CIE $L^*a^*b^*$ color space of the image. We employ low-level features of image and apply band pass filter to estimate and highlight salient region. We compute the likelihood probability by applying Bayesian framework at pixels. Experiments on two publically available datasets (MSRA and SED2) show that our saliency model performs better as compared to the ten state of the art algorithms by achieving higher precision, better recall and F-Measure.

Image saliency detection based on geodesic-like and boundary contrast maps

  • Guo, Yingchun;Liu, Yi;Ma, Runxin
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.797-810
    • /
    • 2019
  • Image saliency detection is the basis of perceptual image processing, which is significant to subsequent image processing methods. Most saliency detection methods can detect only a single object with a high-contrast background, but they have no effect on the extraction of a salient object from images with complex low-contrast backgrounds. With the prior knowledge, this paper proposes a method for detecting salient objects by combining the boundary contrast map and the geodesics-like maps. This method can highlight the foreground uniformly and extract the salient objects efficiently in images with low-contrast backgrounds. The classical receiver operating characteristics (ROC) curve, which compares the salient map with the ground truth map, does not reflect the human perception. An ROC curve with distance (distance receiver operating characteristic, DROC) is proposed in this paper, which takes the ROC curve closer to the human subjective perception. Experiments on three benchmark datasets and three low-contrast image datasets, with four evaluation methods including DROC, show that on comparing the eight state-of-the-art approaches, the proposed approach performs well.

A Review of Machine Learning Algorithms for Fraud Detection in Credit Card Transaction

  • Lim, Kha Shing;Lee, Lam Hong;Sim, Yee-Wai
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.31-40
    • /
    • 2021
  • The increasing number of credit card fraud cases has become a considerable problem since the past decades. This phenomenon is due to the expansion of new technologies, including the increased popularity and volume of online banking transactions and e-commerce. In order to address the problem of credit card fraud detection, a rule-based approach has been widely utilized to detect and guard against fraudulent activities. However, it requires huge computational power and high complexity in defining and building the rule base for pattern matching, in order to precisely identifying the fraud patterns. In addition, it does not come with intelligence and ability in predicting or analysing transaction data in looking for new fraud patterns and strategies. As such, Data Mining and Machine Learning algorithms are proposed to overcome the shortcomings in this paper. The aim of this paper is to highlight the important techniques and methodologies that are employed in fraud detection, while at the same time focusing on the existing literature. Methods such as Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), naïve Bayesian, k-Nearest Neighbour (k-NN), Decision Tree and Frequent Pattern Mining algorithms are reviewed and evaluated for their performance in detecting fraudulent transaction.

Automated ground penetrating radar B-scan detection enhanced by data augmentation techniques

  • Donghwi Kim;Jihoon Kim;Heejung Youn
    • Geomechanics and Engineering
    • /
    • v.38 no.1
    • /
    • pp.29-44
    • /
    • 2024
  • This research investigates the effectiveness of data augmentation techniques in the automated analysis of B-scan images from ground-penetrating radar (GPR) using deep learning. In spite of the growing interest in automating GPR data analysis and advancements in deep learning for image classification and object detection, many deep learning-based GPR data analysis studies have been limited by the availability of large, diverse GPR datasets. Data augmentation techniques are widely used in deep learning to improve model performance. In this study, we applied four data augmentation techniques (geometric transformation, color-space transformation, noise injection, and applying kernel filter) to the GPR datasets obtained from a testbed. A deep learning model for GPR data analysis was developed using three models (Faster R-CNN ResNet, SSD ResNet, and EfficientDet) based on transfer learning. It was found that data augmentation significantly enhances model performance across all cases, with the mAP and AR for the Faster R-CNN ResNet model increasing by approximately 4%, achieving a maximum mAP (Intersection over Union = 0.5:1.0) of 87.5% and maximum AR of 90.5%. These results highlight the importance of data augmentation in improving the robustness and accuracy of deep learning models for GPR B-scan analysis. The enhanced detection capabilities achieved through these techniques contribute to more reliable subsurface investigations in geotechnical engineering.

Soccer Video Highlight Building Algorithm using Structural Characteristics of Broadcasted Sports Video (스포츠 중계 방송의 구조적 특성을 이용한 축구동영상 하이라이트 생성 알고리즘)

  • 김재홍;낭종호;하명환;정병희;김경수
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.727-743
    • /
    • 2003
  • This paper proposes an automatic highlight building algorithm for soccer video by using the structural characteristics of broadcasted sports video that an interesting (or important) event (such as goal or foul) in sports video has a continuous replay shot surrounded by gradual shot change effect like wipe. This shot editing rule is used in this paper to analyze the structure of broadcated soccer video and extracts shot involving the important events to build a highlight. It first uses the spatial-temporal image of video to detect wipe transition effects and zoom out/in shot changes. They are used to detect the replay shot. However, using spatial-temporal image alone to detect the wipe transition effect requires too much computational resources and need to change algorithm if the wipe pattern is changed. For solving these problems, a two-pass detection algorithm and a pixel sub-sampling technique are proposed in this paper. Furthermore, to detect the zoom out/in shot change and replay shots more precisely, the green-area-ratio and the motion energy are also computed in the proposed scheme. Finally, highlight shots composed of event and player shot are extracted by using these pre-detected replay shot and zoom out/in shot change point. Proposed algorithm will be useful for web services or broadcasting services requiring abstracted soccer video.