• 제목/요약/키워드: higher order shear deformation plate theory

검색결과 174건 처리시간 0.023초

고차전단변형을 고려한 복합적층판 및 쉘구조의 좌굴해석 (Buckling Analysis of Laminated Composite Plate and Shell Structures considering a Higher-Order Shear Deformation)

  • 이원홍;윤석호;한성천
    • 한국강구조학회 논문집
    • /
    • 제9권1호통권30호
    • /
    • pp.3-11
    • /
    • 1997
  • Laminated composite shells exhibit properties comsiderably different from those of the single-layer shell. Thus, to obtain the more accurate solutions to laminated composite shells ptoblems, effects of shear strain should be condidered in analysis of them. A higher-order shear deformation theory requires no shear correction coefficients. This theory is used to determine the buckling loads of elastic shells. The theory accounts for parabolic distribution of the transverse shear through the thickness of the shell and rotary inertia. Exact solutions of simply-supported shells are obtained and the results are compared with the exact solutions of the first-order shear deformation theory, and the classical theory. The present theory predicts the buckling loads more accurately when compared to the first -order and classical theory.

  • PDF

Stability and vibration analysis of composite plates using spline finite strips with higher-order shear deformation

  • Akhras, G.;Li, W.
    • Structural Engineering and Mechanics
    • /
    • 제27권1호
    • /
    • pp.1-16
    • /
    • 2007
  • In the present study, a spline finite strip with higher-order shear deformation is formulated for the stability and free vibration analysis of composite plates. The analysis is conducted based on Reddy's third-order shear deformation theory, Touratier's "Sine" model, Afaq's exponential model and Cho's higher-order zigzag laminate theory. Consequently, the shear correction coefficients are not required in the analysis, and an improved accuracy for thick laminates is achieved. The numerical results, based on different shear deformation theories, are presented in comparison with the three-dimensional elasticity solutions. The effects of length-to-thickness ratio, fibre orientation, and boundary conditions on the critical buckling loads and natural frequencies are investigated through numerical examples.

Effects of thickness stretching in FGM plates using a quasi-3D higher order shear deformation theory

  • Adim, Belkacem;Daouadji, Tahar Hassaine
    • Advances in materials Research
    • /
    • 제5권4호
    • /
    • pp.223-244
    • /
    • 2016
  • In this paper, a higher order shear and normal deformation theory is presented for functionally graded material (FGM) plates. By dividing the transverse displacement into bending, shear and thickness stretching parts, the number of unknowns and governing equations for the present theory is reduced, significantly facilitating engineering analysis. Indeed, the number of unknown functions involved in the present theory is only five, as opposed to six or even greater numbers in the case of other shear and normal deformation theories. The present theory accounts for both shear deformation and thickness stretching effects by a hyperbolic variation of ail displacements across the thickness and satisfies the stress-free boundary conditions on the upper and lower surfaces of the plate without requiring any shear correction factor. Equations of motion are derived from Hamilton's principle. Analytical solutions for the bending and free vibration analysis are obtained for simply supported plates. The obtained results are compared with three-dimensional and quasi- three-dimensional solutions and those predicted by other plate theories. It can be concluded that the present theory is not only accurate but also simple in predicting the bending and free vibration responses of functionally graded plates.

Mechanical behaviour of FGM sandwich plates using a quasi-3D higher order shear and normal deformation theory

  • Daouadj, Tahar Hassaine;Adim, Belkacem
    • Structural Engineering and Mechanics
    • /
    • 제61권1호
    • /
    • pp.49-63
    • /
    • 2017
  • This paper presents an original hyperbolic (first present model) and parabolic (second present model) shear and normal deformation theory for the bending analysis to account for the effect of thickness stretching in functionally graded sandwich plates. Indeed, the number of unknown functions involved in these presents theories is only five, as opposed to six or even greater numbers in the case of other shear and normal deformation theories. The present theory accounts for both shear deformation and thickness stretching effects by a hyperbolic variation of ail displacements across the thickness and satisfies the stress-free boundary conditions on the upper and lower surfaces of the plate without requiring any shear correction factor. It is evident from the present analyses; the thickness stretching effect is more pronounced for thick plates and it needs to be taken into consideration in more physically realistic simulations. The numerical results are compared with 3D exact solution, quasi-3-dimensional solutions and with other higher-order shear deformation theories, and the superiority of the present theory can be noticed.

Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories

  • Yahia, Sihame Ait;Atmane, Hassen Ait;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제53권6호
    • /
    • pp.1143-1165
    • /
    • 2015
  • In this work, various higher-order shear deformation plate theories for wave propagation in functionally graded plates are developed. Due to porosities, possibly occurring inside functionally graded materials (FGMs) during fabrication, it is therefore necessary to consider the wave propagation in plates having porosities in this study. The developed refined plate theories have fewer number of unknowns and equations of motion than the first-order shear deformation theory, but accounts for the transverse shear deformation effects without requiring shear correction factors. The rule of mixture is modified to describe and approximate material properties of the functionally graded plates with porosity phases. The governing equations of the wave propagation in the functionally graded plate are derived by employing the Hamilton's principle. The analytic dispersion relation of the functionally graded plate is obtained by solving an eigenvalue problem. The effects of the volume fraction distributions and porosity volume fraction on wave propagation of functionally graded plate are discussed in detail. The results carried out can be used in the ultrasonic inspection techniques and structural health monitoring.

An efficient and simple higher order shear deformation theory for bending analysis of composite plates under various boundary conditions

  • Adim, Belkacem;Daouadji, Tahar Hassaine;Rabia, Benferhat;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • 제11권1호
    • /
    • pp.63-82
    • /
    • 2016
  • In this study, the bending and dynamic behaviors of laminated composite plates is examined by using a refined shear deformation theory and developed for a bending analysis of orthotropic laminated composite plates under various boundary conditions. The displacement field of the present theory is chosen based on nonlinear variations in the in-plane displacements through the thickness of the plate. By dividing the transverse displacement into the bending and shear parts and making further assumptions, the number of unknowns and equations of motion of the present theory is reduced and hence makes them simple to use. In the analysis, the equation of motion for simply supported thick laminated rectangular plates is obtained through the use of Hamilton's principle. Numerical results for the bending and dynamic behaviors of antisymmetric cross-ply laminated plate under various boundary conditions are presented. The validity of the present solution is demonstrated by comparison with solutions available in the literature. Numerical results show that the present theory can archive accuracy comparable to the existing higher order shear deformation theories that contain more number of unknowns.

A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates

  • Fahsi, Asmaa;Tounsi, Abdelouahed;Hebali, Habib;Chikh, Abdelbaki;Adda Bedia, E.A.;Mahmoud, S.R.
    • Geomechanics and Engineering
    • /
    • 제13권3호
    • /
    • pp.385-410
    • /
    • 2017
  • This work presents a simple and refined nth-order shear deformation theory for mechanical and thermal buckling behaviors of functionally graded (FG) plates resting on elastic foundation. The proposed refined nth-order shear deformation theory has a new displacement field which includes undetermined integral terms and contains only four unknowns. Governing equations are obtained from the principle of minimum total potential energy. A Navier type analytical solution methodology is also presented for simply supported FG plates resting on elastic foundation which predicts accurate solution. The accuracy of the present model is checked by comparing the computed results with those obtained by classical plate theory (CPT), first-order shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). Moreover, results demonstrate that the proposed theory can achieve the same accuracy of the existing HSDTs which have more number of variables.

The buckling of piezoelectric plates on pasternak elastic foundation using higher-order shear deformation plate theories

  • Ellali, Mokhtar;Amara, Khaled;Bouazza, Mokhtar;Bourada, Fouad
    • Smart Structures and Systems
    • /
    • 제21권1호
    • /
    • pp.113-122
    • /
    • 2018
  • In this article, an exact analytical solution for mechanical buckling analysis of magnetoelectroelastic plate resting on pasternak foundation is investigated based on the third-order shear deformation plate theory. The in-plane electric and magnetic fields can be ignored for plates. According to Maxwell equation and magnetoelectric boundary condition, the variation of electric and magnetic potentials along the thickness direction of the plate is determined. The von Karman model is exploited to capture the effect of nonlinearity. Navier's approach has been used to solve the governing equations for all edges simply supported boundary conditions. Numerical results reveal the effects of (i) lateral load, (ii) electric load, (iii) magnetic load and (iv) higher order shear deformation theory on the critical buckling load have been investigated. These results must be the analysis of intelligent structures constructed from magnetoelectroelastic materials.

Flexural and free vibration responses of thick isotropic bridge deck using a novel two variable refined plate theory

  • Djidar, Fatima Zohra;Hebali, Habib;Amara, Khaled;Tounsi, Abdelouahed;Bendaho, Boudjema;Ghazwani, M.H.;Hussain, Muzamal
    • Structural Engineering and Mechanics
    • /
    • 제82권6호
    • /
    • pp.725-734
    • /
    • 2022
  • This work presents a simple exponential shear deformation theory for the flexural and free vibration responses of thick bridge deck. Contrary to the existing higher order shear deformation theories (HSDT) and the first shear deformation theory (FSDT), the proposed model uses a new displacement field which incorporates undetermined integral terms and involves only two variables. Governing equations and boundary conditions of the theory are derived by the principle of virtual work. The simply supported thick isotropic square and rectangular plates are considered for the detailed numerical studies. Results of displacements, stresses and frequencies are compared with those of other refined theories and exact theory to show the efficiency of the proposed theory. Good agreement is achieved of the present results with those of higher order shear deformation theory (HSDT) and elasticity theory. Moreover, results demonstrate that the developed two variable refined plate theory is simple for solving the flexural and free vibration responses of thick bridge deck and can achieve the same accuracy of the existing HSDTs which have more number of variables.

Non-classical plate model for single-layered graphene sheet for axial buckling

  • Safaei, Babak;Khoda, Farzad Hamed;Fattahi, A.M.
    • Advances in nano research
    • /
    • 제7권4호
    • /
    • pp.265-275
    • /
    • 2019
  • In this work, the effect of size on the axial buckling behavior of single-layered graphene sheets embedded in elastic media is studied. We incorporate Eringen's nonlocal elasticity equations into three plate theories of first order shear deformation theory, higher order shear deformation theory, and classical plate theory. The surrounding elastic media are simulated using Pasternak and Winkler foundation models and their differences are evaluated. The results obtained from different nonlocal plate theories include the values of Winkler and Pasternak modulus parameters, mode numbers, nonlocal parameter, and side lengths of square SLGSs. We show here that axial buckling behavior strongly depends on modulus and nonlocal parameters, which have different values for different mode numbers and side lengths. In addition, we show that in different nonlocal plate theories, nonlocality is more influential in first order shear deformation theory, especially in certain range of nonlocal parameters.