Browse > Article
http://dx.doi.org/10.12989/sss.2018.21.1.113

The buckling of piezoelectric plates on pasternak elastic foundation using higher-order shear deformation plate theories  

Ellali, Mokhtar (Smart structures Laboratory, University Centre of Ain Temouchent)
Amara, Khaled (Laboratory of Materials and Hydrology (LMH), University of Sidi Bel Abbes)
Bouazza, Mokhtar (Laboratory of Materials and Hydrology (LMH), University of Sidi Bel Abbes)
Bourada, Fouad (Smart structures Laboratory, University Centre of Ain Temouchent)
Publication Information
Smart Structures and Systems / v.21, no.1, 2018 , pp. 113-122 More about this Journal
Abstract
In this article, an exact analytical solution for mechanical buckling analysis of magnetoelectroelastic plate resting on pasternak foundation is investigated based on the third-order shear deformation plate theory. The in-plane electric and magnetic fields can be ignored for plates. According to Maxwell equation and magnetoelectric boundary condition, the variation of electric and magnetic potentials along the thickness direction of the plate is determined. The von Karman model is exploited to capture the effect of nonlinearity. Navier's approach has been used to solve the governing equations for all edges simply supported boundary conditions. Numerical results reveal the effects of (i) lateral load, (ii) electric load, (iii) magnetic load and (iv) higher order shear deformation theory on the critical buckling load have been investigated. These results must be the analysis of intelligent structures constructed from magnetoelectroelastic materials.
Keywords
buckling; piezoelectric; plates; shear deformation theories;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Dutta, G., Panda, S.K., Mahapatra, T.R., Singh, V.K. (2017), "Electro-magneto-elastic response of laminated composite plate: A finite element approach", Int. J. Appl. Comput. Math., DOI: 10.1007/s40819-016-0256-6 , Volume 3, Issue 3, pp 2573-2592.   DOI
2 Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5 unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253.   DOI
3 Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "A new quasi- 3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech. - ASCE, 140(2), 374-383.   DOI
4 Kant, T. and Khare, R.K. (1997), "A higher-order facet quadrilateral composite shell element", Int. J. Numer. Meth. Eng., 40(24), 4477-4499.   DOI
5 Kant, T. and Pandya, B.N. (1988), "A simple finite element formulation of a higher-order theory for un symmetrically laminated composite plates", Compos. Struct., 9(3), 215-264.   DOI
6 Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2015), "Nonlinear flexural analysis of laminated composite flat panel under hygrothermo-mechanical loading", Steel Compos. Struct., 19(4), 1011-1033.   DOI
7 Katariya P.V. and Panda, S.K. (2016), "Thermal buckling and vibration analysis of laminated composite curved shell panel", Aircraft Eng. Aerosp. Technol., 88(1), DOI: 10.1108/AEAT-11-2013-0202.   DOI
8 Dahsin, L. and Xiaoyu, L. (1996), "An overall view of laminate theories based on displacement hypothesis", J. Compos. Mater., 30(14), 1539-1561.   DOI
9 Levinson, M. (1980), "An accurate simple theory of the statics and dynamics of elastic plates", Mech. Res. Commun., 7(6), 343-350.   DOI
10 Li, Y.S. (2014), "Buckling analysis of magnetoelectroelastic plate resting on Pasternak elastic foundation", Mech. Res. Commun., 56(14), 104-114.   DOI
11 Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508.   DOI
12 Panda, S.K. and Singh, B.N. (2011), "Large amplitude free vibration analysis of thermally post-buckled composite doubly curved panel using nonlinear FEM", Finite Elem. Anal. Des., 47, (4), 378-386.   DOI
13 Panda, S.K. and Singh, B.N. (2009), "Thermal post-buckling behaviour of laminated composite cylindrical/hyperboloidal shallow shell panel using nonlinear finite element method", Compos. Struct., 91(3), 366-384.   DOI
14 Panda, S.K. and Singh, B.N. (2010), "Nonlinear free vibration analysis of thermally post-buckled composite spherical shell panel", Int. J. Mech. Mater. Des., 6(2), 175-188.   DOI
15 Panda, S.K. and Singh, B.N. (2010), "Thermal post-buckling analysis of laminated composite spherical shell panel embedded with SMA fibres using nonlinear FEM", Proc. IMechE Part C: J. Mech. Eng. Sci., 224(4), 757-769.
16 Panda, S.K. and Singh, B.N. (2013), "Thermal post-buckling analysis of laminated composite shell panel using NFEM", Mech. Based Des. Struct., 41(4), 468-488.   DOI
17 Panda, S.K. and Singh, B.N. (2013a), "Nonlinear finite element analysis of thermal post-buckling vibration of laminated composite shell panel embedded with SMA fibre", Aerosp. Sci. Technol., 29(1), 47-57.   DOI
18 Nedri, K., El Meiche, N. and Tounsi, A. (2014), "Free vibration analysis of laminated composite plates resting on elastic foundations by using a refined hyperbolic shear deformation theory", Mech. Compos. Mater., 49(6), 629-640.   DOI
19 Mallikarjuna, M. and Kant, T. (1993), "A critical review and some results of recently developed refined theories of fiber-reinforced laminated composites and sandwiches", Compos. Struct., 23(4), 293-312.   DOI
20 Mohan, P.R., Naganarayana, B.P. and Prathap, G. (1994), "Consistent and variationally correct finite elements for higherorder laminated plate theory", Compos. Struct., 29(4), 445-456.   DOI
21 Noor, A.K. and Burton, W.S. (1989a), "Assessment of shear deformation theories for multilayered composite plates", Appl. Mech. Rev., 42(1), 1-13.   DOI
22 Noor, A.K. and Burton, W.S. (1989b), "Stress and free vibration analysis of multilayer composite plates", Compos. Struct., 11, 183-204.   DOI
23 Li, J.Y. and Dunn, M.L. (1998), "Micromechanics of magnetoelectro-elastic composite materials: average fields and effective behavior", J. Intel. Mat. Syst. Str., 9, 404-416.   DOI
24 Panda S.K. and Katariya P.V. (2015), "Stability and free vibration behaviour of laminated composite panels under thermomechanical loading", Int. J. Appl. Comput. Math., 1(3) 475-490.   DOI
25 Reddy, J.N. (1993), "An evaluation of equivalent-single-layer and layerwise theories of composite laminates", Compos. Struct., 25(1-4), 21-35.   DOI
26 Panda, S.K. and Singh, B.N. (2013b), "Post-buckling analysis of laminated composite doubly curved panel embedded with SMA fibres subjected to thermal environment", Mech. Adv. Mater. Struct., 20(10), 842-853.   DOI
27 Panda, S.K. and Singh, B.N. (2013c), "Large amplitude free vibration analysis of thermally post-buckled composite doubly curved panel embedded with SMA fibres", Nonlinear Dynam., 74(1-2), 395-418   DOI
28 Priya, S., Islam, R., Dong, S.X. and Vehland, D. (2007), "Recent advancements in magnetoelectric particular and laminate composites", J. Electroceram., 19, 149-166.   DOI
29 Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752.   DOI
30 Reddy, J.N. (1990), "A review of refined theories of laminated composite plates", Shock Vib. Dig., 22(7), 3-17.   DOI
31 Reddy, J.N. (2004), "Mechanics of laminated composite plates and shels", Theory and Analysis, CRC Press LLC, USA.
32 Ren, J.G. (1986), "A new theory of laminated plate", Compos. Sci. Technol., 26(3), 225-239.   DOI
33 Singh , V.K., Mahapatra T.R. and Panda, S.K. (2016b), "Nonlinear flexural analysis of single/doubly curved smart composite shell panels integrated with PFRC actuator", Eur. J. Mech -A/Solids, D.O.I. 10.1016/j.euromechsol. 2016.08.006.
34 Aboudi, J. (2001), "Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites", Smart Mater. Struct. 10, 867-877.   DOI
35 Achenbach, J.D. (2000), "Quantitative nondestructive evaluation", Int. J. Solids Struct., 37, 13-27.   DOI
36 Saidi, H., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2013), "Thermo-mechanical bending response with stretching effect of functionally graded sandwich plates using a novel shear deformation theory", Steel. Compos. Struct., 15(2), 221-245.   DOI
37 Shahrjerdi, A., Mustapha, F., Bayat, M. and Majid, D.L.A. (2011), "Free vibration analysis of solar functionally graded plate with temperature-dependent material properties using second order shear deformation theory", J. Mech. Sci. Technol., 25(9), 2195-2209.   DOI
38 Shen, H.S. (2001), "Thermal postbuckling of shear-deformable laminated plates with piezoelectric actuators", Compos. Sci. Technol., 61(13), 1931-1943.   DOI
39 Singh, V.K. and Panda, S.K (2016), "Free vibration analysis of laminated cylindrical shell panel embedded with PZT", Proceedings of the 12th Int. Conf. on Vibration Problem (ICOVP), Procedia Engineering.
40 Singh, V.K. and Panda, S.K. (2015a), "Large amplitude free vibration analysis of laminated composite spherical shells embedded with piezoelectric layers", Smart Struct. Syst., 16(5), 853-872.   DOI
41 Singh, V.K. and Panda, S.K. (2015b), "Large amplitude vibration behaviour of doubly curved composite panels embedded with piezoelectric layers", J. Vib. Control, Doi:10.1177/1077546315609988.
42 Singh, V.K., Mahapatra, T.R. and Panda, S.K. (2016a), "Nonlinear transient analysis of smart laminated composite plate integrated with PVDF sensor and AFC actuator", Compos. Struct., 157, 121-130.   DOI
43 Viswanathan, K.K., Javed, S. and Abdul Aziz, Z. (2013), "Free vibration of symmetric angle-ply layered conical shell frusta of variable thickness under shear deformation theory", Struct. Eng. Mech., 45(2), 259-275.   DOI
44 Suman S.D., Hirwani, C.K., Chaturbedy, A. and Panda, S.K. (2016), "Effect of magnetostrictive material layer on the stress and deformation behavior of laminated composite structure", IOP Conf. Ser.: Mater. Sci. Eng., 178 012031.
45 Swaminathan, K. and Naveenkumar, D.T. (2014), "Higher order refined computational models for the stability analysis of FGM plates: Analytical solutions", J. Mech. A/Solids, 47, 349-361.   DOI
46 Varelis, D. and Saravanos, D.A. (2004), "Coupled buckling and postbuckling analysis of active laminated piezoelectric composite plates", Int. J. Solids Struct., 41(5-6), 1519-1538.   DOI
47 Wu, T.L. and Huang, J.H. (2000), "Closed-form solutions for the magnetoelectric coupling coefficients in fibrous composites with piezoelectric and piezomagnetic phases", Int. J. Solids Struct., 37, 2981-3009.   DOI
48 Xiang, S., Jin, Y.X., Bi, Z.Y., Jiang, S.X. and Yang, M.S. (2011), "A n-order shear deformation theory for free vibration of functionally graded and composite sandwich plates", Compos. Struct., 93(11), 2826-2832.   DOI
49 Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318.   DOI
50 Ahmed, A. (2014), "Post buckling analysis of sandwich beams with functionally graded faces using a consistent higher order theory", Int. J. Civil Struct. Environ., 4(2), 59-64.
51 Avellaneda, M., Harshe, G. (1994),"Magnetoelectric effect in piezoelectric/magnetostrictive multilayer (2-2) composites", J. Intel. Mat. Syst. Str., 5, 501-513.   DOI
52 Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos.: Part B, 60, 274-283.   DOI
53 Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431.   DOI
54 Benveniste, Y. (1995), "Magnetoelectric effect in fibrous composites with piezoelectric and piezomag-netic phases", Phys. Rev. B, 51, 16424-16427.   DOI
55 Bourada, F., Amara, Kh. and Tounsi, A. (2016),"Buckling analysis of isotropic and orthotropic platesusing a novel four variable refined plate theory", Steel Compos. Struct., 21(6), 1287-1306.   DOI
56 Bhimaraddi, A. and Stevens, L.K. (1984), "A higher order theory for free vibration of orthotropic, homogeneous and laminated rectangular plates", J. Appl. Mech.-T ASME, 51(1), 195-198.   DOI
57 Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104.   DOI