Browse > Article
http://dx.doi.org/10.12989/sem.2022.82.6.725

Flexural and free vibration responses of thick isotropic bridge deck using a novel two variable refined plate theory  

Djidar, Fatima Zohra (Smart Structures Laboratory, University of Ain Temouchent, Faculty of Science & Technology, Civil Engineering Department)
Hebali, Habib (Material and Hydrology Laboratory, Civil Engineering Department, Faculty of Technology, University of Sidi Bel Abbes)
Amara, Khaled (Engineering and Sustainable Development Laboratory, University of Ain Temouchent)
Tounsi, Abdelouahed (Material and Hydrology Laboratory, Civil Engineering Department, Faculty of Technology, University of Sidi Bel Abbes)
Bendaho, Boudjema (Material and Hydrology Laboratory, Civil Engineering Department, Faculty of Technology, University of Sidi Bel Abbes)
Ghazwani, M.H. (Department of Mechanical Engineering, Faculty of Engineering, Jazan University)
Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
Publication Information
Structural Engineering and Mechanics / v.82, no.6, 2022 , pp. 725-734 More about this Journal
Abstract
This work presents a simple exponential shear deformation theory for the flexural and free vibration responses of thick bridge deck. Contrary to the existing higher order shear deformation theories (HSDT) and the first shear deformation theory (FSDT), the proposed model uses a new displacement field which incorporates undetermined integral terms and involves only two variables. Governing equations and boundary conditions of the theory are derived by the principle of virtual work. The simply supported thick isotropic square and rectangular plates are considered for the detailed numerical studies. Results of displacements, stresses and frequencies are compared with those of other refined theories and exact theory to show the efficiency of the proposed theory. Good agreement is achieved of the present results with those of higher order shear deformation theory (HSDT) and elasticity theory. Moreover, results demonstrate that the developed two variable refined plate theory is simple for solving the flexural and free vibration responses of thick bridge deck and can achieve the same accuracy of the existing HSDTs which have more number of variables.
Keywords
free vibration; isotropic plates; refined plate theory; static flexure; transverse shear stresses;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Reddy, J.N. (1979), "Free vibration of antisymmetric angle ply laminated plates including transverse shear deformation by the finite element method", J. Sound Vib., 66(4), 565-576. https://doi.org/10.1016/0022-460X(79)90700-4.   DOI
2 Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of FGM beams", Struct. Eng. Mech., 69(4), 427-437. http://doi.org/10.12989/sem.2019.69.4.427.   DOI
3 Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18, 31-38. https://doi.org/10.1115/1.4010217.   DOI
4 Mohan, P.R., Naganarayana, B.P. and Prathap, G. (1994), "Consistent and variationally correct finite elements for higher-order laminated plate theory", Compos. Struct., 29(4), 445-456. https://doi.org/10.1016/0263-8223(94)90113-9.   DOI
5 Pagano, N.J. (1970), "Exact solutions for bidirectional composites and sandwich plates", J. Compos. Mater., 4, 20-34. https://doi.org/10.1177/002199837000400102.   DOI
6 Pinto, V.T., Oliveira Rocha, L.A., Fragassa, C., Domingues dos Santos, E. and Isoldi, L.A. (2020), "Multiobjective geometric analysis of stiffened plates under bending through constructal design method", J. Appl. Comput. Mech., 6(SI), 1438-1449. https://doi.org/10.22055/jacm.2020.35248.2608.   DOI
7 Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", ASME J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719.   DOI
8 Swaminathan, K. and Naveenkumar, D.T. (2014), "Higher order refined computational models for the stability analysis of FGM plates: Analytical solutions", Eur. J. Mech. A/Solid., 47, 349-361. https://doi.org/10.1016/j.euromechsol.2014.06.003.   DOI
9 Tran-Ngoc, H., Khatir, S., Ho-Khac, H., De Roeck, G., Bui-Tien, T. and Wahab, M.A. (2020), "Efficient Artificial neural networks based on a hybrid metaheuristic optimization algorithm for damage detection in laminated composite structures", Compos. Struct., 262, 113339. https://doi.org/10.1016/j.compstruct.2020.113339.   DOI
10 Whitney, J.M. (1969), "The effect of transverse shear deformation on the bending of laminated plates", J. Compos. Mater., 3(3), 534-547. https://doi.org/10.1177/002199836900300316.   DOI
11 Sayyad, A.S. and Ghugal, Y.M. (2012), "Bending and free vibration analysis of thick isotropic plates by using exponential shear deformation theory", Appl. Comput. Mech., 6, 65-82.
12 Shahrjerdi, A., Mustapha, F., Bayat, M. and Majid, D.L.A. (2011), "Free vibration analysis of solar functionally graded plates with temperature-dependent material properties using second order shear deformation theory", J. Mech. Sci. Technol., 25(9), 2195-2209. https://doi.org/10.1007/s12206-011-0610-x.   DOI
13 Yaghoobi, H., Valipour, M.S., Fereidoon, A. and Khoshnevisrad, P. (2014), "Analytical study on postbuckling and nonlinear free vibration analysis of FG beams resting on nonlinear elastic foundation under thermo-mechanical loadings using VIM", Steel Compos. Struct., 17(5), 753-776. http://doi.org/10.12989/scs.2014.17.5.753.   DOI
14 Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", ASME J. Appl. Mech., 12, 69-77. https://doi.org/10.1115/1.4009435.   DOI
15 Saadatmorad, M., Jafari-Talookolaei, R.A., Pashaei, M.H. and Khatir, S. (2021), "Damage detection on rectangular laminated composite plates using wavelet based convolutional neural network technique", Compos. Struct., 278, 114656. https://doi.org/10.1016/j.compstruct.2020.113216.   DOI
16 Sallai, B., Hadji, L., Hassaine Daouadji, T. and Adda Bedia, E.A. (2015), "Analytical solution for bending analysis of functionally graded beam", Steel Compos. Struct., 19(4), 829-841. https://doi.org/10.12989/scs.2015.19.4.829.   DOI
17 Srinivas, S., JogaRao, C.V. and Rao, A.K. (1970), "An exact analysis for vibration of simpply supported homogeneous and laminated thick rectangular plates", J. Sound Vib., 12, 187-199. https://doi.org/10.1016/0022-460X(70)90089-1.   DOI
18 Sun, C.T. and Whitney, J.M. (1973), "Theories for the dynamic response of laminated plates", AIAA J., 11(2), 178-183. https://doi.org/10.2514/3.50448.   DOI
19 Reddy, J.N. and Khdeir, A.A. (1989), "Buckling and vibration of laminated composite plates using various plate theories", AIAA J., 27(12), 1808-1817. https://doi.org/10.2514/3.10338.   DOI
20 Shankara, C.A. and Iyengar, N.G. (1996), "A C0 element for the free vibration analysis of laminated composite plates", J. Sound Vib., 191(5), 721-738. https://doi.org/10.1006/jsvi.1996.0152.   DOI
21 Ton, T.H.L. (2020), "A novel quadrilateral element for dynamic response of plate structures subjected to blast loading", J. Appl. Comput. Mech., 6, 1314-1323.
22 Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.   DOI
23 Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.   DOI
24 Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. http://doi.org/10.12989/scs.2019.30.6.603.   DOI
25 Whitney, J.M. and Pagano, N.J. (1970), "Shear deformation in heterogeneous anisotropic plates", J. Appl. Mech.-T, ASME, 37(4), 1031-1036. https://doi.org/10.1115/1.3408654.   DOI
26 Zenzen, R., Khatir, S., Belaidi, I., Le Thanh, C. and Abdel Wahab, M. (2020), "A modifed transmissibility indicator and Artifcial Neural Network for damage identifcation and quantifcation in laminated composite structures", Comput. Struct., 248, 112497. https://doi.org/10.1016/j.compstruct.2020.112497.   DOI
27 Zouatnia, N. and Hadji, L. (2019), "Static and free vibration behavior of functionally graded sandwich plates using a simple higher order shear deformation theory", Adv. Mater. Res., 8(4), 313-335. https://doi.org/10.12989/amr.2019.8.4.313.   DOI
28 Viswanathan, K.K., Javed, S. and Abdul Aziz, Z. (2013), "Free vibration of symmetric angle-ply layered conical shell frusta of variable thickness under shear deformation theory", Struct. Eng. Mech., 45(2), 259-275. http://doi.org/10.12989/sem.2013.45.2.259.   DOI
29 Ghugal, Y.M. and Pawar, M.D. (2011), "Buckling and vibration of plates by hyperbolic shear deformation theory", J. Aerosp. Eng. Technol., 1, 1-12.
30 Ambartsumyan, S.A. (1970), Theory of Anisotropic Plates, Technomic Publishing Company, Westport, CT, USA.
31 Bert, C.W. and Chen, T.L.C. (1978), "Effect of shear deformation on vibration of antisymmetric angle ply laminated rectangular plates", Int. J. Solid. Struct., 14(6), 465-473. https://doi.org/10.1016/0020-7683(78)90011-2.   DOI
32 Boulal, A., Bensattalah, T., Karas, A., Zidour, M., Heireche, H. and Adda Bedia, E.A. (2020), "Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle", Struct. Eng. Mech., 73(2), 209-223. https://doi.org/10.12989/sem.2020.73.2.209.   DOI
33 Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2021), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Compos. Struct., 259, 113216. https://doi.org/10.1016/j.compstruct.2020.113216.   DOI
34 Ellali, M., Amara, Kh., Bouazza, M. and Bourada, F. (2018), "The buckling of piezoelectric plates on pasternak elastic foundation using higher-order shear deformation plate theories", Smart Struct. Syst., 21(1), 113-122. https://doi.org/10.12989/sss.2018.21.1.113.   DOI
35 Ghodrati, B., Yaghootian, A., Ghanbar Zadeh, A. and Sedighi, H.M. (2018), "Lamb wave extraction of dispersion curves in micro/nano-plates using couple stress theories", Wave. Random Complex Media, 28(1), 15-34. https://doi.org/10.1080/17455030.2017.1308582.   DOI
36 Ghugal, Y.M. and Sayyad, A.S. (2010), "Free vibration of thick orthotropic plates using trigonometric shear deformation theory", Lat. Am. J. Solid. Struct., 8, 229-243.   DOI
37 Khatir, S., Tiachacht, S., Thanh, C.L., Ghandourah, E. and Wahab, M.A. (2021), "An improved artificial neural network using arithmetic optimization algorithm for damage assessment in FGM composite plates", Compos. Struct., 273, 114287. https://doi.org/10.1016/j.compstruct.2021.114287.   DOI
38 Hadji, L., Hassaine Daouadji, T., Ait Amar Meziane, M., Tlidji, Y. and AddaBedia, E.A. (2016), "Analysis of functionally graded beam using a new first-order shear deformation theory", Struct. Eng. Mech., 57(2), 315-325. https://doi.org/10.12989/sem.2016.57.2.315.   DOI
39 Kant, T. and Swaminathan, K. (2001), "Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory", Compos. Struct., 53(1), 73-85. https://doi.org/10.1016/S0263-8223(00)00180-X.   DOI
40 Khatir, S., Tiachacht, S., Thanh, C.L., Bui, T.Q. and Wahab, M.A. (2019), "Damage assessment in composite laminates using ANN-PSO-IGA and Cornwell indicator", Compos. Struct., 230, 111509. https://doi.org/10.1016/j.compstruct.2019.111509.   DOI
41 Kirchhoff, G. (1850), "Uber das Gleichgewicht und die Bewegung einer elastischen Scheibe", Journal fur die reine und angewandte Mathematik (Crelles Journal), 1850(40), 51-88.   DOI
42 Yan, P.C., Norris, C.H. and Stavsky, Y. (1966), "Elastic wave propagation in heterogeneous plates", Int. J. Solid. Struct., 2(4), 665-684. https://doi.org/10.1016/0020-7683(66)90045-X.   DOI
43 Kirchhoff, G.R. (1850), "Uber die Schwingungen einer kriesformigen elastischen Scheibe", Annalen der Physik und Chemie, 81, 258-264.   DOI
44 Mantari, J.L. and Granados, E.V. (2015), "A refined FSDT for the static analysis of functionally graded sandwich plates", Thin Wall. Struct., 90, 150-158. https://doi.org/10.1016/j.tws.2015.01.015.   DOI