• Title/Summary/Keyword: higher order accuracy

Search Result 791, Processing Time 0.033 seconds

Development of 2D Depth-Integrated Hydrodynamic and Transport Model Using a Compact Finite Volume Method (Compact Finite Volume Method를 이용한 수심적분형 흐름 및 이송-확산 모형 개발)

  • Kim, Dae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.473-480
    • /
    • 2012
  • A two-dimensional depth-integrated hydrodynamic and a depth-averaged passive scalar transport models were developed by using a Compact Finite Volume Method (CFVM) which can assure a higher order accuracy. A typical wave current interaction experimental data set was compared with the computed results by the proposed CFVM model, and resonable agreements were observed from the comparisons. One and two dimensional scalar advection tests were conducted, and very close agreements were observed with very little numerical diffusion. Finally, a turbulent mixing simulation was done in an open channel flow, and a reasonable similarity with LES data was observed.

Accuracy of the Loran C Fix on the Route Between Pusan and Cheju (부산-제주 항로상에서 Loran C 위치정도)

  • 김민석
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.2
    • /
    • pp.167-172
    • /
    • 1990
  • A number of studies for the improvement of the accuracy of the Loran C fix were carried out previously. But most studies were preformed when a ship was at anchorage, or in port. To investigate the accuracy of the Loran C fix when a ship was underway and in port, a series of observation was made on the route between Pusan and Cheju from Oct. 1988 to Oct. 1989. The obtained results are summerized as follows: 1. There is little difference in the accuracy of the Loran C fix by daytime and night, and the higher the mountain nearby ship, the greater the error of ship's position. 2. When a ship is at anchorage and underway, and the accuracy of ship's position is almost not affected by course while underway. 3. In order to promote the accuracy of the fixed position, a navigator must correct the propagation velocity and the geodetic system simultaneously, but in this paper the authors find that a most accurate position can be obtained by converting the geodetic system only.

  • PDF

Design and Performance Measurement of a Genetic Algorithm-based Group Classification Method : The Case of Bond Rating (유전 알고리듬 기반 집단분류기법의 개발과 성과평가 : 채권등급 평가를 중심으로)

  • Min, Jae-H.;Jeong, Chul-Woo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.1
    • /
    • pp.61-75
    • /
    • 2007
  • The purpose of this paper is to develop a new group classification method based on genetic algorithm and to com-pare its prediction performance with those of existing methods in the area of bond rating. To serve this purpose, we conduct various experiments with pilot and general models. Specifically, we first conduct experiments employing two pilot models : the one searching for the cluster center of each group and the other one searching for both the cluster center and the attribute weights in order to maximize classification accuracy. The results from the pilot experiments show that the performance of the latter in terms of classification accuracy ratio is higher than that of the former which provides the rationale of searching for both the cluster center of each group and the attribute weights to improve classification accuracy. With this lesson in mind, we design two generalized models employing genetic algorithm : the one is to maximize the classification accuracy and the other one is to minimize the total misclassification cost. We compare the performance of these two models with those of existing statistical and artificial intelligent models such as MDA, ANN, and Decision Tree, and conclude that the genetic algorithm-based group classification method that we propose in this paper significantly outperforms the other methods in respect of classification accuracy ratio as well as misclassification cost.

Diagnosis Accuracy Rate Comparative Study of Each Sasang Constitutions and Sex Distinction by Body Measurement Method between 3D Body Measuring Instrument and Hand-operating (3D체형측정기와 수동측정 방법간의 사상체질별 ${\cdot}$ 성별 진단정확률 비교연구)

  • Kwon, Suk-Dong;Sul, Yu-Kyung;Lee, Eui-Ju;Kim, Kyu-Kon;Kim, Jong-Won
    • Journal of Sasang Constitutional Medicine
    • /
    • v.19 no.1
    • /
    • pp.60-77
    • /
    • 2007
  • 1. Objectives This is the comparative study with hand-operated measurement method and Automatic measurement method, in order to convert the automatic measurement method. 2. Methods We measured the body of patients(hand-operated Width 5 Places and hand-operated circumference 8 place,Automatic Width 5 and automatic circumference 8 place by 3D body measuring instrument) and analyzed the anthropometric data divding into sex&age. 362 patient's data are used in the analysis. 3. Results and Conclusions 1) 1th circumference variable which standing was not a sasang constitutional difference. 2) Diagnostic accuracy rate of the body measurement was 50-80%. 3) Diagnostic accuracy rate of man is higher than Diagnostic accuracy rate of women 4) Diagnostic accuracy rate of Automatic & hand-operated measuring was not a big difference.

  • PDF

A Stock Transfer Process Development for Distribution Center Relocation (물류센터 이전 시 재고 이관 프로세스 개발)

  • Chi, Woon-Sik;Oh, In-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.20 no.3
    • /
    • pp.37-46
    • /
    • 2018
  • According to enhancement of roles and functions of enterprises' distribution centers, recent trend of distribution centers are specialization and diversification which have generated lots of new distribution center building or expansion of the existing ones and led attention on stock transfer importance in case of distribution center relocation. This thesis is a study for how to reduce stock transfer leadtime in order to minimize business risk and how to increase inventory accuracy when stock ownership is transferred in case of distribution center relocation, and to provide inventory accuracy management methods and inventory in/out management types, detailed definition to evaluate level for inventory accuracy management and pros/cons by inventory in/out management type assuming 'the higher inventory accuracy before stock transfer, the shorter stock transfer leadtime when distribution center is relocated'. This thesis provides detailed procedure to secure an absolute stock transfer leadtime and process to confirm hugh inventory accuracy by stakeholders which should be sloved by Task Force Team for stock transfer in case of distribution center relocation.

Turbulent Flow Analysis of a Circular Cylinder Using a Fractional Step Method with Compact Pade Discretization (Fractional Step 방법과 Compact Pade 차분화를 이용한 원형 실린더 주위의 난류 유동해석)

  • Chung S. H;Park K. S;Park W. G
    • Journal of computational fluids engineering
    • /
    • v.8 no.3
    • /
    • pp.50-55
    • /
    • 2003
  • Recent numerical simulation has a tendency to require the higher-order accuracy in time, as well as in space. This tendency is more true in LES and acoustic noise simulation. In the present work, the accuracy of a Fractional step method, which is widely used in LES simulation, has been increased to the fourth-order accurate compact Pade discretization. To validate the present code, the flow-field past a cylinder was simulated and compared with experiment. A good agreement with experiment was achieved.

Estimation of Thermal Behavior for the Machine Origin of Machine Tools using GMOH Methodology (GMOH 기법에 의한 공작기계 원점의 열적거동 예측)

  • 안중용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.213-218
    • /
    • 1997
  • Thermal deformation of machine origin of machine tools due to internal and external heat sources has been the most important problem to fabricate products with higher accuracy and performance. In order to solve this problem, GMDH models were constructed to estimate thermal deformation of machine origin for a vertical machining ceneter through measurement of temperature data of specific points on the machine tool. These models are nonlinear equations with high-order polynomials and implemented in a multilayered perceptron type network structure. Input variables and orders are automatically selected by correlation and optimization procedure. Sensors with small influence are deleted automatically in this algorithm. It was shown that the points of temperature measurement can be reduced without sacrificing the estimation accuracy of $\pm$5${\mu}{\textrm}{m}$. From the experimental result, it was confirmed that GMDH methodology was superior to least square models to estimate the thermal behavior of machine tools.

  • PDF

Hybrid Component Mode Synthesis Considering Residual Dynamic Flexibility Attachment Mode (잔여 동연성 부가 모드를 고려한 혼합 부분 모드 합성법)

  • Cha Hyun Joo;Kim Jin Ho;Lee Shi Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.716-725
    • /
    • 2005
  • The method of substructure synthesis o. component mode synthesis(CMS) provides an effective means of dynamic analysis of very large and/or complex structures. In this study, residual dynamic flexibility attachment modes in hybrid component mode synthesis are considered for the purpose of exactly compensating the effect of higher order truncated modes. Following this way, the analysis accuracy of the synthesized structure can be improved effectively with less computational effort. In order to show the accuracy and effectiveness of the proposed hybrid component mode synthesis(HCMS), numerical experiments were carried out for the models of a clamped-clamped beam. The results verified the effectiveness of the proposed method.

Mechanical and thermal stability investigation of functionally graded plates resting on elastic foundations

  • Houari, Ali;Benguediab, Mohamed;Bakora, Ahmed;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.423-434
    • /
    • 2018
  • In present work, both the hyperbolic shear deformation theory and stress function concept are used to study the mechanical and thermal stability responses of functionally graded (FG) plates resting on elastic foundation. The accuracy of the proposed formulation is checked by comparing the computed results with those predicted by classical plate theory (CPT), first-order shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). Moreover, results demonstrate that the proposed formulation can achieve the same accuracy of the existing HSDTs which have more number of governing equations.

Turbulent Flow Analysis of a Circular Cylinder Using a Fractional Step Method (Fractional Step Method을 이용한 원형 실린더 주위의 난류 유동해석)

  • Park K. S.;Park W. G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.152-157
    • /
    • 2003
  • As computer capacity has been progressed continuously, the studies of the flow characteristics have been performing by the numerical methods actively. Recent numerical simulation has a tendency to require the higher-order accuracy in time, as well as in space. This tendency is more true in LES and acoustic noise simulation. In this study, 3-dimensional unsteady Incompressible Navier-Stokes equation was solved by numerical method using the fractional step method with the fourth order compact pade scheme to achieve high accuracy To validate the present code and algorithm, 3D flow-field around a cylinder was simulated. The drag coefficient and lift coefficient were computed and, then, compared with experiment. The present code will be tailored to LES simulation for more accurate turbulent flow analysis.

  • PDF