• Title/Summary/Keyword: higher order accuracy

Search Result 791, Processing Time 0.032 seconds

A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation

  • Tounsi, Abdelouahed;Al-Dulaijan, S.U.;Al-Osta, Mohammed A.;Chikh, Abdelbaki;Al-Zahrani, M.M.;Sharif, Alfarabi;Tounsi, Abdeldjebbar
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.511-524
    • /
    • 2020
  • In this research, a simple four-variable trigonometric integral shear deformation model is proposed for the static behavior of advanced functionally graded (AFG) ceramic-metal plates supported by a two-parameter elastic foundation and subjected to a nonlinear hygro-thermo-mechanical load. The elastic properties, including both the thermal expansion and moisture coefficients of the plate, are also supposed to be varied within thickness direction by following a power law distribution in terms of volume fractions of the components of the material. The interest of the current theory is seen in its kinematics that use only four independent unknowns, while first-order plate theory and other higher-order plate theories require at least five unknowns. The "in-plane displacement field" of the proposed theory utilizes cosine functions in terms of thickness coordinates to calculate out-of-plane shear deformations. The vertical displacement includes flexural and shear components. The elastic foundation is introduced in mathematical modeling as a two-parameter Winkler-Pasternak foundation. The virtual displacement principle is applied to obtain the basic equations and a Navier solution technique is used to determine an analytical solution. The numerical results predicted by the proposed formulation are compared with results already published in the literature to demonstrate the accuracy and efficiency of the proposed theory. The influences of "moisture concentration", temperature, stiffness of foundation, shear deformation, geometric ratios and volume fraction variation on the mechanical behavior of AFG plates are examined and discussed in detail.

복합운송주선업체의 고객서비스 민족도 평가분석

  • 이제홍
    • Journal of Distribution Research
    • /
    • v.4 no.3
    • /
    • pp.1-22
    • /
    • 2000
  • Many foreign freight forwarders make inroads into domestic markets. Korean freight forwarders are not competitive on th domestic logistics area because of higher customer services by foreign freight forwarders in Korea. The purpose of this research is to analyze degree of satisfaction on customer services attributes of freight forwarders in Korea, and to strengthen the competitiveness of customer services by Korea freight forwarders in contrast to foreign investment freight forwarders in Korea. The results of the research could be summarized as follows.: When freight forwarders are selected, the most important customer service attributes have been ranked in order with 'the accuracy management of shipping order' , the reasonable offers of freight rate' and 'the quick arrangement of vessels' when freight forwarders are selected.

  • PDF

Self-Organizing Polynomial Neural Networks Based on Genetically Optimized Multi-Layer Perceptron Architecture

  • Park, Ho-Sung;Park, Byoung-Jun;Kim, Hyun-Ki;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.423-434
    • /
    • 2004
  • In this paper, we introduce a new topology of Self-Organizing Polynomial Neural Networks (SOPNN) based on genetically optimized Multi-Layer Perceptron (MLP) and discuss its comprehensive design methodology involving mechanisms of genetic optimization. Let us recall that the design of the 'conventional' SOPNN uses the extended Group Method of Data Handling (GMDH) technique to exploit polynomials as well as to consider a fixed number of input nodes at polynomial neurons (or nodes) located in each layer. However, this design process does not guarantee that the conventional SOPNN generated through learning results in optimal network architecture. The design procedure applied in the construction of each layer of the SOPNN deals with its structural optimization involving the selection of preferred nodes (or PNs) with specific local characteristics (such as the number of input variables, the order of the polynomials, and input variables) and addresses specific aspects of parametric optimization. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between the approximation and generalization (predictive) abilities of the model. To evaluate the performance of the GA-based SOPNN, the model is experimented using pH neutralization process data as well as sewage treatment process data. A comparative analysis indicates that the proposed SOPNN is the model having higher accuracy as well as more superb predictive capability than other intelligent models presented previously.reviously.

Analysis of Reinforced Concrete Panel subjected to Blast Load using Parallel and Domain Decomposition (병렬과 영역분할을 이용한 폭발하중을 받는 철근콘크리트패널의 해석)

  • Park, Jae-Won;Yun, Sung-Hwan;Park, Tae-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.365-373
    • /
    • 2011
  • Damage of reinforced concrete panel subjected to blast load using parallel and domain decomposition is analyzed. The numerical results are sensitive to the mesh size because blast waves are generated during the extremely short term. In order to investigate the effect of mesh size on the blast wave, the analysis results from various wave mesh size using AUTODYN, the explicit finite element analysis program, were compared with existing experimental results. The smaller mesh size was, the higher accuracy was. However, in this case, the analysis was inefficient. Therefore, in order to increase numerical efficiency, the parallel analysis using decomposed method based on Euler and Lagrangian description was performed. Finally, the decomposed method using both the structure domain based on Lagrange description and the blast wave domain based on Euler description was more efficient than the decomposed method using only the Lagrange mesh on structure domain.

Indoor Position Technology in Geo-Magnetic Field (지구 자기장 기반의 Fingerprint 실내 위치추정 방법 연구)

  • Hur, Soojung;Song, Junyeol;Park, Yongwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.1
    • /
    • pp.131-140
    • /
    • 2013
  • Due to the limitations of the existing indoor positioning system depending on the radio wave, at present, it is required to introduce a new method in order to improve the accuracy in indoor environment. Recently, bio-inspired technology has become the future core technology. Thus, this study examined the accurate positioning method applying the abilities that animals with homing instinct measure their position by searching geomagnetic field with the use of their biomagnets. In order to confirm the applicability of geomagnetic field, a new source for indoor positioning, this study separated the constituent materials and building structure and designed the structures that can carry the actual magnetic field sensor and the data collection module. Subsequently, this study investigated the applicability of geomagnetic field as a positioning source by establishing the positioning system of Fingerprint method. In performance evaluation of the positioning system, the geomagnetic strength-based positioning system was similar to or approximately 20 percent higher than the wireless LAN-based positioning system in the buildings with the existing wireless LAN. Thus, in the environment without infrastructure for indoor positioning, the geomagnetic, an independent earth resource, can make it possible to realize the indoor positioning.

Deep Learning-based Person Analysis in Oriental Painting for Supporting Famous Painting Habruta (명화 하브루타 지원을 위한 딥러닝 기반 동양화 인물 분석)

  • Moon, Hyeyoung;Kim, Namgyu
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.9
    • /
    • pp.105-116
    • /
    • 2021
  • Habruta is a question-based learning that talks, discusses, and argues in pairs. In particular, the famous painting Habruta is being implemented for the purpose of enhancing the appreciation ability of paintings and enriching the expressive power through questions and answers about the famous paintings. In this study, in order to support the famous painting Habruta for oriental paintings, we propose a method of automatically generating questions from the gender perspective of oriental painting characters using the current deep learning technology. Specifically, in this study, based on the pre-trained model, VGG16, we propose a model that can effectively analyze the features of Asian paintings by performing fine-tuning. In addition, we classify the types of questions into three types: fact, imagination, and applied questions used in the famous Habruta, and subdivide each question according to the character to derive a total of 9 question patterns. In order to verify the feasibilityof the proposed methodology, we conducted an experiment that analyzed 300 characters of actual oriental paintings. As a result of the experiment, we confirmed that the gender classification model according to our methodology shows higher accuracy than the existing model.

Telemedicine Software Application

  • UNGUREANU, Ovidiu Costica;POPESCU, Marius-Constantin;CIOBANU, Daniela;UNGUREANU, Elena;SARLA, Calin Gabriel;CIOBANU, Alina-Elena;TODINCA, Paul
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.171-180
    • /
    • 2021
  • Currently, hospitals and medical practices have a large amount of unstructured information, gathered in time at each ward or practice by physicians in a wide range of medical branches. The data requires processing in order to be able to extract relevant information, which can be used to improve the medical system. It is useful for a physician to have access to a patient's entire medical history when he or she is in an emergency situation, as relevant information can be found about the patient's problems such as: allergies to various medications, personal history, or hereditary collateral conditions etc. If the information exists in a structured form, the detection of diseases based on specific symptoms is much easier, faster and with a higher degree of accuracy. Thus, physicians may investigate certain pathological profiles and conduct cohort clinical trials, including comparing the profile of a particular patient with other similar profiles that already have a confirmed diagnosis. Involving information technology in this field will change so the time which the physicians should spend in front of the computer into a much more beneficial one, providing them with the possibility for more interaction with the patient while listening to the patient's needs. The expert system, described in the paper, is an application for medical diagnostic of the most frequently met conditions, based on logical programming and on the theory of probabilities. The system rationale is a search item in the field basic knowledge on the condition. The web application described in the paper is implemented for the ward of pathological anatomy of a hospital in Romania. It aims to ease the healthcare staff's work, to create a connection of communication at one click between the necessary wards and to reduce the time lost with bureaucratic proceedings. The software (made in PHP programming language, by writing directly in the source code) is developed in order to ease the healthcare staff's activity, being created in a simpler and as elegant way as possible.

Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam

  • Zerrouki, Rachid;Karas, Abdelkader;Zidour, Mohamed;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Bourada, Fouad;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.117-124
    • /
    • 2021
  • This work focused on the novel numerical tool for the bending responses of carbon nanotube reinforced composites (CNTRC) beams. The higher order shear deformation beam theory (HSDT) is used to determine strain-displacement relationships. A new exponential function was introduced into the carbon nanotube (CNT) volume fraction equation to show the effect of the CNT distribution on the CNTRC beams through displacements and stresses. To determine the mechanical properties of CNTRCs, the rule of the mixture was employed by assuming that the single-walled carbon nanotubes (SWCNTs)are aligned and distributed in the matrix. The governing equations were derived by Hamilton's principle, and the mathematical models presented in this work are numerically provided to verify the accuracy of the present theory. The effects of aspect ratio (l/d), CNT volume fraction (Vcnt), and the order of exponent (n) on the displacement and stresses are presented and discussed in detail. Based on the analytical results. It turns out that the increase of the exponent degree (n) makes the X-beam stiffer and the exponential CNTs distribution plays an indispensable role to improve the mechanical properties of the CNTRC beams.

Flutter phenomenon in composite sandwich beams with flexible core under follower force

  • Saghavaz, Fahimeh Rashed;Payganeh, GHolamhassan;Fard, Keramat Malekzadeh
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.615-630
    • /
    • 2021
  • The main purpose of the present work was to study the dynamic instability of a three-layered, thick composite sandwich beam with the functionally graded (FG) flexible core subjected to an axial compressive follower force. Flutter instability of a sandwich cantilever beam was analyzed using the high-order theory of sandwich beams, for the first time. The governing equations in general for sandwich beams with an FG core were extracted and could be used for all types of sandwich beams with any types of face sheets and cores. A polynomial function is considered for the vertical distribution of the displacement field in the core layer along the thickness, based on the results of the first Frosting's higher order model. The governing partial differential equations and the equations of boundary conditions of the dynamic system are derived using Hamilton's principle. By applying the boundary conditions and numerical solution methods of squares quadrature, the beam flutter phenomenon is studied. In addition, the effects of different geometrical and material parameters on the flutter threshold were investigated. The results showed that the responses of the dynamic instability of the system were influenced by the follower force, the coefficients of FGs and the geometrical parameters like the core thickness. Comparison of the present results with the published results in the literature for the special case confirmed the accuracy of the proposed theory. The results showed that the follower force of the flutter phenomenon threshold for long beams tends to the corresponding results in the Timoshenko beam.

Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position

  • Hachemi, Houari;Bousahla, Abdelmoumen Anis;Kaci, Abdelhakim;Bourada, Fouad;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Tounsi, Abdelouahed;Al-Zahrani, Mesfer Mohammad;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.39 no.1
    • /
    • pp.51-64
    • /
    • 2021
  • This paper presents a high-order shear and normal deformation theory for the bending of FGM plates. The number of unknowns and governing equations of the present theory is reduced, and hence makes it simple to use. Unlike any other theory, the number of unknown functions involved in displacement field is only four, as against five or more in the case of other shear and normal deformation theories. Based on the novel shear and normal deformation theory, the position of neutral surface is determined and the governing equilibrium equations based on neutral surface are derived. There is no stretching-bending coupling effect in the neutral surface-based formulation, and consequently, the governing equations of functionally graded plates based on neutral surface have the simple forms as those of isotropic plates. Navier-type analytical solution is obtained for functionally graded plate subjected to transverse load for simply supported boundary conditions. The accuracy of the present theory is verified by comparing the obtained results with other quasi-3D higher-order theories reported in the literature. Other numerical examples are also presented to show the influences of the volume fraction distribution, geometrical parameters and power law index on the bending responses of the FGM plates are studied.