• Title/Summary/Keyword: higher order accuracy

Search Result 781, Processing Time 0.029 seconds

Evaluation of the Influence of a Convective Term Caused by Various Finite Difference Schemes in General Curvature Coordinate (일반곡선 좌표계 사용시 대류항의 차분스킴에 의한 영향 평가)

  • 이연원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.94-101
    • /
    • 1994
  • To develope the new simulator for the analysis of fluid flow information, the influence of various convective difference schemes were evaluated. General curvilinear coordinate system with nonorthogonal grids was adopted for the successful analysis of various complex geometries. Computation results show that if we can not obtain full grid numbers within available computational environment, we need to use higher order finite difference schemes to keep the prediction accuracy.

  • PDF

Geometry-based quality metric for multi-view autostereoscopic 3D display

  • Saveljev, Vladimir;Son, Jung-Young;Kwack, Kae-Dal
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1014-1017
    • /
    • 2009
  • The analytical expression for quality function is found including the dependence on disparity. The problem is considered in the projective coordinates for which the forward and backward transformation matrices are found. The formation of side observer regions is considered. The probability of the pseudo stereo effect is also estimated. Testing patterns are improved in order to provide higher accuracy of measurements. This is confirmed in experiments.

  • PDF

Postoperative Pain Assessment based on Derivative Waveform of Photoplethysmogram (광용적맥파 미분 파형 기반 수술 후 통증 평가 가능성 고찰)

  • Seok, Hyeon Seok;Shin, Hangsik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.962-968
    • /
    • 2018
  • In this study, we developed novel indicators to assess postoperative pain based on PPG derivative waveform. As the candidate indicator of postoperative pain assessment, the time from the start of beating to the n-th peak($T_n$) and the n-th peak amplitude($A_n$) of the PPG derivative were selected. In order to verify derived indicators, each candidate indicator was derived from the PPG of 78 subjects before and after surgery, and it was confirmed whether significant changes were observed after surgery. Logistic classification was performed with each proposed indicator to calculate the pain classification accuracy, then the classification performance was compared with SPI(Surgical Pleth Index, GE Healthcare, Chicago, US). The results showed that there were significant differences(p < 0.01) in all indicators except for $T_3$ and $A_3$. The coefficient of variation(CV) of every time-related indicators were lower than the CV of SPI(30.43%), however, the CV in amplitude-related parameters were higher than that of SPI. Among the candidate indicators, amplitude of the first peak, $A_1$, showed that highest accuracy in post-operative pain classification, 68.72%, and it is 15.53% higher than SPI.

A New Architecture of Genetically Optimized Self-Organizing Fuzzy Polynomial Neural Networks by Means of Information Granulation

  • Park, Ho-Sung;Oh, Sung-Kwun;Ahn, Tae-Chon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1505-1509
    • /
    • 2005
  • This paper introduces a new architecture of genetically optimized self-organizing fuzzy polynomial neural networks by means of information granulation. The conventional SOFPNNs developed so far are based on mechanisms of self-organization and evolutionary optimization. The augmented genetically optimized SOFPNN using Information Granulation (namely IG_gSOFPNN) results in a structurally and parametrically optimized model and comes with a higher level of flexibility in comparison to the one we encounter in the conventional FPNN. With the aid of the information granulation, we determine the initial location (apexes) of membership functions and initial values of polynomial function being used in the premised and consequence part of the fuzzy rules respectively. The GA-based design procedure being applied at each layer of genetically optimized self-organizing fuzzy polynomial neural networks leads to the selection of preferred nodes with specific local characteristics (such as the number of input variables, the order of the polynomial, a collection of the specific subset of input variables, and the number of membership function) available within the network. To evaluate the performance of the IG_gSOFPNN, the model is experimented with using gas furnace process data. A comparative analysis shows that the proposed IG_gSOFPNN is model with higher accuracy as well as more superb predictive capability than intelligent models presented previously.

  • PDF

Fuzzy Logic Based Sound Source Localization System Using Sound Strength in the Underground Parking Lot (지하주차장에서 음의 세기를 이용한 퍼지로직 기반 음원 위치추정 시스템)

  • Choi, Chang Yong;Lee, Dong Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.5
    • /
    • pp.434-439
    • /
    • 2013
  • It is very difficult to monitor the blind spots that are not recognized by traditional surveillance camera (CCTV) systems, and the surveillance efficiencies are very low though many accidents/events can be solved by the systems. In this paper, the fuzzy logic based sound source localization system using sound strength in the underground parking lot is suggested and the performance of the system is analyzed in order to enhance the stabilization and the accuracy of the localization algorithm in the suggested system. It is confirmed that the localization stabilization of the localization algorithm (SLA_fuzzy) using the fuzzy logic in the suggested system is 4 times higher than that of the conventional localization algorithm (SLA). In addition to this, the localization accuracy of the SLA_fuzzy in the suggested system is 29% higher than that of the SLA.

Change of Substructure Design with Changed Angle of Skew Bridges (사교의 사각에 따른 하부구조 설계변화)

  • 이주호;염종윤;박경래;배한욱
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.3-12
    • /
    • 1999
  • This study presents a suggestion of regulation of skewed slab bridge. In order to find the characteristic behavior of skew bridge, many cases of skew bridges were analyzed with changed angle of skew. The comparison of design methods for cantilever part in pier was also made. It was found that : (1) The lower the skew angle was, the higher the maximum support reaction forces at the end point were. (2) The higher the ratio of L/B was, the higher the maximum support reaction force at the point was. (3) The effect of skew may be neglected for skew angles of $70^{\circ}$or more. (4) If elastic springs are applied to the boundary conditions to simulate the rubber pad bearings, the results will be more reasonable. (5) The shear deformation effect must be considered in the analysis of cantilever part of substructure. (6) Using strut and tie model to design cantilever part of pier, it will be more simple than finite element method with same accuracy and more accurate than using frame element.

Numerical Study of PAH Formation Characteristics in Laminar Non-Premixed C2H4 Jet Flames (층류 비예혼합 C2H4 제트 화염장에서의 PAH 생성특성 해석)

  • Kim, Taehoon;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.133-134
    • /
    • 2014
  • The full transport equation approach for laminar non-premixed flame with detailed chemistry, soot and radiation has an advantage in accuracy and describing for emission pathway, but this approach requires the excessive computational cost especially for a higher-order hydrocarbon fuel flames. On the other hand, the standard flamelet model has an efficiency and accuracy for non-premixed flame, though this model is not suitable for simulating slow processor like soot and radiation in laminar non-premixed flame situation. To overcome this limitation, modified transient flamelet model is developed which coupled with two-equation soot model involved in soot formation and evolution mechanism such as nucleation, surface growth, oxidation and agglomeration.

  • PDF

Study for Improvement of Tracking Accuracy of the Feeding System with Iron Core Type Linear DC Motor by Neural Network Control (신경망 제어에 의한 철심형 리니어모터의 추종성 향상 연구)

  • 송창규;김경호;정재한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.73-77
    • /
    • 2002
  • The requirements for higher productivity call for high speed of the machine tool axes. Iron core type linear DC motor is growly accepted far a viable candidate of the high speed machine tool feed unit. LDM, however, has inherent disturbance force components: cogging and force ripple. These disturbance force directly affects tracking accuracy of the carrage and must be eliminated or reduced. Reducing motor ripple, this paper adapted the feed forward compensation method and neural network control. Experiments carried 7ut on the linear motor test setup show that this control methods is usable in order to reduce the motor ripple.

  • PDF

Accuracy of Pulsed Doppler Ultrasound Velocity Measurements : In Vitro Flow Phantom Study (Pulsed Doppler 초음파속도측정의 정확도 판정 : 유동 phantom 연구)

  • Kim, Young-Ho;Min, Byung-Goo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.153-156
    • /
    • 1994
  • An in vitro steady flow experiment was performed in order to test the accuracy of velocity measurement obtained through a pulsed Doppler echocardiography. A flow phantom was designed for the use in a wide velocity range at a given flow rate. The results showed that the pulsed Doppler velocity measurement obtained in this flow phantom is accurate at low flow rates. However, ultrasound velocity measurement should be performed under a careful considerations of PRF and Doppler gain settings, especially at higher flow rates.

  • PDF

RICHARDSON EXTRAPOLATION AND DEFECT CORRECTION OF MIXED FINITE ELEMENT METHODS FOR ELLIPTIC OPTIMAL CONTROL PROBLEMS

  • Chen, Yanping;Huang, Yunqing;Hou, Tianliang
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.549-569
    • /
    • 2012
  • In this paper asymptotic error expansions for mixed finite element approximations to a class of second order elliptic optimal control problems are derived under rectangular meshes, and the Richardson extrapolation of two different schemes and interpolation defect correction can be applied to increase the accuracy of the approximations. As a by-product, we illustrate that all the approximations of higher accuracy can be used to form a class of a posteriori error estimators of the mixed finite element method for optimal control problems.