• 제목/요약/키워드: high-velocity impact

검색결과 434건 처리시간 0.039초

필라멘트 와인딩 공법으로 제작한 탄소섬유/에폭시 복합소재 평판의 저속 낙하 충격시험 시뮬레이션에 관한 연구 (Stundy on Simulation Characteristics of Low Velocity Impact Test of Carbon/Epoxy Composite Plates Manufactured by Filament Winding Method)

  • 변종익;김종열;허석봉;김한상
    • 한국수소및신에너지학회논문집
    • /
    • 제29권2호
    • /
    • pp.190-196
    • /
    • 2018
  • Carbon fiber/epoxy composites are typical brittle materials and have low impact properties. Recently, it is important to investigate impact characteristics of carbon fiber composites because of increasing use as automobile parts and high pressure hydrogen vessels of fuel cell electric vehicles for light weight. In this study, the low velocity impact properties of carbon fiber/epoxy composites fabricated by a filament winding method are studied. The low velocity impact properties were measured by performing tests according to ASTM D7136. The low velocity impact simulations were carried out using commercial structural analysis software, Abaqus. The absorbed energy and the delamination shapes were compared between the experimental and simulation results. The numerical analysis method showed that the absorbed energy decreased with the reduced number of cohesive elements in the composite models.

소형 칩의 고속 표면실장을 위한 충격력 제어 장치의 설계 (A Design of Impact Control Device for High-speed Mounting of Micro-Chips)

  • 이덕영;김병만;심재홍;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.121-121
    • /
    • 2000
  • This paper presents a design of macro-micro system for high-speed mounting of micro-chips. A macro motion device is driven by DC servomotor and ball screw mechanism. To obtain fast response, a micro motion device utilizes a precision elector magnetic actuator In order to reduce peak impact force, We evaluate the design parameters that have an effect on it. And a characteristic of response is simulated using PID controller in velocity and force control.

  • PDF

강구에 의한 횡방향 충격을 받는 적층복합판의 충격 응답 거동 (Impact Response Behaviors of Laminated Composite Plates Subjected to the Transversely Impact of a Steel Ball)

  • 김문생;김남식;박승범;백인환
    • 한국해양공학회지
    • /
    • 제7권2호
    • /
    • pp.44-56
    • /
    • 1993
  • 본 연구는 강구에 의한 충격을 받는 유리/에폭시 적층복합판의 충격 응답 및 파동 전파 특성을 연구하는데 그 목적이 있다. 이를 위하여 고차전 다변형이론에 기초한 동적 유한요소해석을 행하였으며, 저속 및 고속 충격 실험을 행하였다. 동적 유한요소해석으로 부터 접촉력의 변화와 강구의 반발 속도 그리고 충격에 의한 변형률 응답을 구하였다. 변형률 응답은 충격 실험의 결과와 비교 하였다. 또한 고속 충격 실험의 결과로 부터 파동전파 속도를 계산하여 파동 전파 이론에 의한 결과와 비교 검토하였다. 그 결과, 충격 실험에서 구한 변형률 응답은 동적 유한요소해석에 의한 결과의 경향과 잘 일치하였으며, 충격 속도의 증가에 따른 최대접촉력의 증가율은 판의 크기가 클수록 증가하였다. 그리고 파동 전파 속도는 구 결과가 잘 일치하였으며, 접촉시간에 의한 영향으로 강구의 크기가 클 수록 빠르게 나타났다.

  • PDF

SPH 해석기법을 이용한 Cu와 CP-Ti 고속 충돌 접합 단면의 형상학적 평가 (Evaluation of high-velocity impact welding's interfacial morphology between Cu and CP-Ti using SPH numerical analysis method)

  • 박기환;강범수;김정
    • 항공우주시스템공학회지
    • /
    • 제13권2호
    • /
    • pp.34-42
    • /
    • 2019
  • 열을 이용한 접합은 소재 간 열역학적 차이에 의한 열 변형 및 잔류응력 등 원하지 않은 결과를 야기한다. 폭발력 또는 전자기력을 이용한 고상 접합은 열이 사용되지 않아 열역학적 차이가 있는 소재접합에 이점이 있다. 이때, 해당 접합은 짧은 시간 내(${\mu}s$) 이루어지며, 접합면에서 고속 및 대 변형이 동반된다. 수치해석 모델은 고속 충돌 접합 메커니즘을 이해하는 데 중요한 역할을 수행한다. 하지만 고속 및 대 변형이 나타나는 해석에서 전통적인 라그랑지안 기법은 격자 얽힘이 발생해 결과의 신뢰성이 낮다. 본 연구는 무격자 수치해석 방식의 SPH(Smoothed Particle Hydrodynamics)를 이용하여 열역학적 차이가 있는 Cu와 CP-Ti의 고속 충돌 접합을 수행하였고 경계면 결합 형상이 발생함을 확인하였다. 해석의 결과로 경계면 결합 형상이 매개변수(충돌 속도, 충돌 각도)의 관계에 따라 형상의 정도(직선, 소용돌이), 주기, 길이 등이 다르게 나타나는 것을 확인 및 비교하였다.

고속충격시 볼탄에 의한 알루미늄 합금의 관통 깊이와 형상에 관한 실험적 연구 (The experimental investigation for penetration depth and shape of aluminum alloy plates by 5.56mm ball projectile with striking velocities between 350 and 750㎧)

  • 손세원;김희재;김영태
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.800-803
    • /
    • 2002
  • This investigation describes and analyses the experimental results proper to the penetration of Al5052-H34 alloy plates of thickness 6, 12 and 16mm(T/D=1, 2, 3) by 5.56mm ball projectiles over the velocity range 350-750㎧. All the high velocity impact tests were carried out at normal impact angle, i.e. zero obliquity. The experimental results presented the variation of depth of penetration, bulge height and diameter, plugged length and diameter with the velocity fur tests on each plate of a given thickness in order to determine the deformation shapes of 5.56mm ball projectiles and targets. Also the protection ballistic limit($V_50$) tests were conducted.

  • PDF

저속 충격을 받는 Glass/phenol 복합적층재의 손상 해석 (A Damage Analysis of Glass/phenol Laminated Composite Subjected to Low Velocity Impact)

  • 나재연;이영신;김재훈;조정미;박병준
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.89-92
    • /
    • 2002
  • Traditionally unidirectional laminated composite which are characterized by high specific stiffness and strength were used for structural application. But theses composites are highly susceptible to impact damage because of lower transverse tensile strength. The main failure modes of laminated composite are fiber breakage, matrix cracking and delamination for low velocity impact. The modified failure criterions are implemented to predict these failure modes with finite element analysis. Failure behavior of the woven fabric laminated composite which is used in forehead part of subway to lighten weigh has been studied. The new failure criterions are in good agreement with experimental results and can predict the failure behavior of the woven fabric composite plate subjected to low velocity impact more accurately.

  • PDF

Geometry optimization of a double-layered inertial reactive armor configured with rotating discs

  • Bekzat Ajan;Dichuan Zhang;Christos Spitas;Elias Abou Fakhr;Dongming Wei
    • Advances in Computational Design
    • /
    • 제8권4호
    • /
    • pp.309-325
    • /
    • 2023
  • An innovative inertial reactive armor is being developed through a multi-discipline project. Unlike the well-known explosive or non-explosive reactive armour that uses high-energy explosives or bulging effect, the proposed inertial reactive armour uses active disc elements that is set to rotate rapidly upon impact to effectively deflect and disrupt shaped charges and kinetic energy penetrators. The effectiveness of the proposed armour highly depends on the tangential velocity of the impact point on the rotating disc. However,for a single layer armour with an array of high-speed rotating discs, the tangential velocity is relatively low near the center of the disc and is not available between the gap of the discs. Therefore, it is necessary to configure the armor with double layers to increase the tangential velocity at the point of impact. This paper explores a multi-objective geometry design optimization for the double-layered armor using Nelder-Mead optimization algorithm and integration tools of the python programming language. The optimization objectives include maximizing both average tangential velocity and high tangential velocity areas and minimizing low tangential velocity area. The design parameters include the relative position (translation and rotation) of the disc element between two armor layers. The optimized design results in a significant increase of the average tangential velocity (38%), increase of the high tangential velocity area (71.3%), and decrease of the low tangential velocity area (86.2%) as comparing to the single layer armor.

3 차원 유한요소해석을 이용한 자유경계조건에서의 두께 1.7 mm DP780 고강도 강판의 저 속 충격 특성 분석 (A Study on Low Velocity Impact Characteristics of DP 780 High Strength Steel Sheet with Thickness of 1.7 mm on the Free Boundary Condition Using Three-Dimensional Finite Element Analysis)

  • 안동규;남경흠;성대용;양동열;임지호
    • 한국정밀공학회지
    • /
    • 제27권11호
    • /
    • pp.46-56
    • /
    • 2010
  • The present research works investigated into the low velocity impact characteristics of DP 780 high strength steel sheet with 1.7 mm in thickness subjected to free boundary condition using three-dimensional finite element analysis. Finite element analysis was carried out via ABAQUS explicit code. Hyper-elastic model and the damping factor were introduced to improve an accuracy of the FE analysis. An appropriate FE model was obtained via the comparison of the results of the FE analyses and those of the impact tests. The influence of the impact energy and nose diameter of the impact head on the force-deflection curves, impact time, absorption characteristics of the impact energy, deformation behaviours, and stress-strain distributions was quantitatively examined using the results of FE analysis. The results of the FE analysis showed that the absorption rate of impact energy lies in the range of the 70.7-77.5 %. In addition, it was noted that the absorption rate of impact energy decreases when the impact energy increases and the nose diameter of the impact head decreases. The local deformation of the impacted region was rapidly increased when the impact energy was larger than 76.2 J and the nose diameter was 20 mm. A critical impact energy, which occur the instability of the DP780, was estimated using the relationship between the plastic strain and the impact energy. Finally, characteristics of the plastic energy dissipation and the strain energy density were discussed.

Optimization of Composite Laminates Subjected to High Velocity Impact Using a Genetic Algorithm

  • Nguyen, Khanh-Hung;Ahn, Jeoung-Hee;Kweon, Jin-Hwe;Choi, Jin-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권3호
    • /
    • pp.227-233
    • /
    • 2010
  • In this study, a genetic algorithm was utilized to optimize the stacking sequence of a composite plate subjected to a high velocity impact. The aim is to minimize the maximum backplane displacement of the plate. In the finite element model, we idealized the impactor using solid elements and modeled the composite plate by shell elements to reduce the analysis time. Various tests were carried out to investigate the effect of parameters in the genetic algorithm such as the type of variables, population size, number of discrete variables, and mutation probability.

세라믹/유리섬유강화복합재 적층판의 고속충돌에 의한 파괴거동 (Fracture Mechanism of Ceramic/Glass-fiber-reinforced-composites Laminate by High Velocity Impact)

  • 정우균;이우일;김희재;권정원;안성훈
    • 한국정밀공학회지
    • /
    • 제23권5호
    • /
    • pp.170-176
    • /
    • 2006
  • Multi-layered laminate made of ceramic/composite have been developed to prevent penetration by high velocity impact. In this study, three-layered plates consisted of 1) cover layer (glass fiber reinforced polymer), 2) $Al_{2}O_{3}$, ceramic plate, and 3) backing plate (glass fiber reinforced polymer) were fabricated with various conditions and tested for their ballistic protection characteristic. The ceramic composite laminates, with thin backing plate, were completely penetrated by armor piercing projectile. The plate with inserted rubber between ceramic and backing plate showed excellent ballistic protection, though completely penetrated by the second shoot.