• 제목/요약/키워드: high-temperature property

검색결과 1,238건 처리시간 0.033초

KIST와 FZ-Julich SOFC간의 출력성능 비교 (Comparison of the Power Generating Characteristics of KIST- and FZ-Julich SOFCs)

  • 정화영;이상철;;김혜령;이해원;이종호
    • 한국세라믹학회지
    • /
    • 제44권12호
    • /
    • pp.703-709
    • /
    • 2007
  • We evaluate and compare the power generating characteristics of the anode supported SOFCs which have been fabricated from KIST and FZ-Julich in Germany. The performance and electrochemical property of each unit cell was characterized at the temperature range of $650-850^{\circ}C$ under same operating conditions and its microstructural property was thoroughly investigated via SEM after the performance test. According to the investigation, KIST- and FZJ SOFC showed different power generating characteristics in their temperature dependances due to their different design of electrode microstructure, especially the cathode microstructure. FZJ SOFC showed better performance at high temperature while showed lower performance at lower temperature. From the investigation about the correlation between microstructure and electrochemical property, we found that the superior performance of FZJ SOFC at high temperature was mainly due to its lower cathodic polarization resistance whereas better performance of KIST SOFC at lower temperature was mostly attributed to the lower ohmic resistance.

고유동 자기충전 콘크리트의 압축강도 수준에 따른 수화발열 특성 (Properties of Hydration Heat with Compressive Strength Level of High Flowing Self-Compacting Concrete)

  • 최연왕;정재권;이재남;김병권
    • 대한토목학회논문집
    • /
    • 제29권5A호
    • /
    • pp.531-541
    • /
    • 2009
  • 본 연구에서는 강도수준(30, 50 및 70 MPa)에 따른 고유동 자기충전 콘크리트의 수화발열 특성을 알아보기 위하여 2성분계 및 3성분계 고유동 자기충전 콘크리트를 제조하여 일반콘크리트와 수화열, 응결 및 역학적 특성을 분석 고찰 하였으며, 콘크리트에 사용된 분체에 대한 미소수화열량을 측정하여 얻은 분체의 열특성값, 간이단열온도실험을 실시하여 얻은 콘크리트의 열특성값 및 콘크리트에 사용된 재료의 일반적인 열특성값을 간편한 방법의 추정식을 이용하여 콘크리트 단열온도를 추정하였다. 또한, 온도해석에 의하여 얻어진 수화열 및 단열온도 특성값을 MIDAS CIVIL 06 프로그램을 이용하여 3차원 온도응력 해석을 실시하여 고유동 자기충전 콘크리트의 수화발열 특성 및 수화열에 의한 온도응력을 분석 고찰하였다.

동전단 마스터곡선을 이용한 아스팔트 바인더의 노화 특성 평가 (Characteristics of Dynamic Shear Modulus Mastercurve of Aged or Unaged Asphalt Binders)

  • 윤태영;함상민;유평준
    • 한국도로학회논문집
    • /
    • 제15권1호
    • /
    • pp.87-94
    • /
    • 2013
  • PURPOSES: To characterize the aging effect on asphalt binder, dynamic shear modulus mastercurve of two typical asphalt binders are developed. METHODS: To develop dynamic shear modulus mastercurve, dynamic shear modulus at high temperature and creep stiffness at low temperature are measured by temperature sweep test and bending beam rheometer test, respectively. RESULTS: It is observed that the aging effect on asphalt binder can be clearly observed from dynamic shear modulus mastercurve and the mastercurve can be utilized to predict behavior of asphalt binder at wide range of temperature. CONCLUSIONS: It is confirmed that SBS 5% modified binder has more desirable mechanical property at low and high temperature as a pavement material comparing to PG64-22 binder and the mastercurve is an effective tool to evaluate the property of asphalt binder.

고체산화물 연료전지의 페로브스카이트와 스피넬 구조를 갖는 Sm-Sr-(Co,Fe,Ni)-O 시스템의 공기극 특성 (Cathode Properties of Sm-Sr-(Co,Fe,Ni)-O System with Perovskite and Spinel Structures for Solid Oxide Fuel Cell)

  • 백승욱;김정현;백승환;배중면
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.133-136
    • /
    • 2007
  • Perovskite-structured samarium strontium cobaltite (SSC), which is mixed ionic electronic conductor (MIEC), is considered as a promising cathode material for intermediate temperature-operating solid oxide fuel cell (SOFC) due to its high electrocatalytic property. Cathode material containing cobalt (Co) is unstable at high temperature and has a relatively high thermal expansion property. In this paper, Sm-Sr-(Co,Fe,Ni)-O system with perovskite and spinel structures was investigated in terms of electrochemical property and thermal expansion property, respectively. Area specific resistance (ASR) was measured by ac impedance spectroscopy to investigate the electrochemical property of cathode, and thermal expansion coefficient (TEC) was measured by using dilatometer. Micro structure of cathode was observed by scanning electron microscopy. Perovskite-structured $Sm_{0.5}Sr_{0.5}CoO_{3-\delta}$ showed the ASR of $0.87{\Omega}/cm^{2}$, and $Sm_{0.5}Sr_{0.5}NiO_{3-\delta}$, which actually has a spinel structure, showed the lowest TEC value of $13.3{\times}10^{-6}/K$.

  • PDF

X20CrMoV12.1강의 열화에 따른 기계적특성 평가 (The Evaluation of Mechanical Property of X20CrMoV12.1 Boiler Tube Steels)

  • 김범수;이성호;김두수;정남근
    • 동력기계공학회지
    • /
    • 제8권3호
    • /
    • pp.18-22
    • /
    • 2004
  • Boiler is one of the most important utilities providing steam to turbine in order to supply mechanical energy in thermal power plant. It is composed of thousands of tubes for high efficient heat transfer. The material for boiler tubes is used in such high temperature and pressure condition as $540^{\circ}C$, 22MPa. The boiler tube material is required to resist creep damage, fatigue cracking, and corrosion damages. 2.25%Cr-1Mo steel is used for conventional boiler tubes, and austenitenite stainless steel is used for higher temperature boiler tubes. But the temperature and pressure of steam in power plant became higher for high plant efficiency. So, the property of boiler tube material must be upgaded to fit the plant property. Several boiler tube material was developed to fit such conditions. X20CrMoV12.1 steel is also developed in 1980's and used for superheater and reheater tubes in supercritical boilers. The material has martensite microstructures which is difficult to evaluate the degradation. In this thesis, degrade the X20CrMoV12.1 steel at high temperatures in electric furnace, and evaluate hardness with Vickers hardness tester and strengths with Indentation tester.

  • PDF

5%Co-5%V-1%Nb 분말고속도공구강의 고온 미끄럼마모특성 (Sliding We3f Properties for 5%Co-5%V-1%Nb High Speed Steel by Powder Metallurgy at High Temperature)

  • 이한영;김용진;배종수
    • Tribology and Lubricants
    • /
    • 제19권3호
    • /
    • pp.151-158
    • /
    • 2003
  • In metal cutting at the tool-chip interface, friction generates considerable amount of heat. Thus, the knowledge of wear properties of cutting tool material in high temperature has been as one of important factors in need of clarification. The authors presented the wear properties of 5%Co-5%V-1%Nb high speed steel, fabricated by powder metallurgy, in room temperature in previous articles. The objective of this paper is to clarify the effects of temperature on its wear properties. Wear tests in sliding conditions under various temperatures have been conducted using the pin-on-disc type wear test machine. The results indicate that the wear properties of 5%Co-5%V-1%Nb high speed steel in high temperature as well as in room temperature are excellent. It may be deduced that the oxide layer formed on worn surface at high temperature is stable enough to prevent wear due to the high temperature strength of its matrix.

고강도강재의 고온인장특성에 관한 실험적 연구 (A Experimental Study on High Temperature Tensile Property of High Strength Steel)

  • 장경호;이진형;신영의
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2003년도 춘계학술발표대회 개요집
    • /
    • pp.260-262
    • /
    • 2003
  • In this study, high temperature tensile properties of high tensile strength steels(POSTEN60, POSTEN80) were investigated by elevated temperature tensile test. According toe the results, high temperature tensile strength of POSTEN60 deteriorated slowly to 100$^{\circ}C$. As the temperature went up the tensile strength became better because of blue shortness and it deteriorated radically after reached to the maximum value around 300$^{\circ}C$. For the POSTEN80, high temperature tensile strength deteriorated slowly to 200$^{\circ}C$.As the temperature went up the tensile strength became better and it deteriorated slowly to 600$^{\circ}C$ after reached to the maximum value around 300$^{\circ}C$. Strain of high tensile strength steels at the elevated temperature increased radically after the mercury rose to 600$^{\circ}C$. The strain hardening ratio of POSTEN60 was larger then that of POSTEN80 at the elevated temperature as in the case at the room temperature and it became smaller radically after the mercury rose to 400$^{\circ}C$.

  • PDF

초 고온·고압 소결 공정으로 제조된 다결정 다이아몬드 컴팩트의 열충격 특성에 미치는 다이아몬드 입자 크기의 영향 (Effect of Diamond Particle Size on the Thermal Shock Property of High Pressure High Temperature Sintered Polycrystalline Diamond Compact)

  • 김지원;백민석;박희섭;조진현;이기안
    • 한국분말재료학회지
    • /
    • 제23권5호
    • /
    • pp.364-371
    • /
    • 2016
  • This study investigates the thermal shock property of a polycrystalline diamond compact (PDC) produced by a high-pressure, high-temperature (HPHT) sintering process. Three kinds of PDCs are manufactured by the HPHT sintering process using different particle sizes of the initial diamond powders: $8-16{\mu}m$ ($D50=4.3{\mu}m$), $10-20{\mu}m$ ($D50=6.92{\mu}m$), and $12-22{\mu}m$ ($D50=8.94{\mu}m$). The microstructure observation results for the manufactured PDCs reveal that elemental Co and W are present along the interface of the diamond particles. The fractions of Co and WC in the PDC increase as the initial particle size decreases. The manufactured PDCs are subjected to thermal shock tests at two temperatures of $780^{\circ}C$ and $830^{\circ}C$. The results reveal that the PDC with a smaller particle size of diamond easily produces microscale thermal cracks. This is mainly because of the abundant presence of Co and WC phases along the diamond interface and the easy formation of Co-based (CoO, $Co_3O_4$) and W-based ($WO_2$) oxides in the PDC using smaller diamond particles. The microstructural factors for controlling the thermal shock property of PDC material are also discussed.

Mo-DTP와 Zn-DTP를 혼합 첨가한 엔진 오일의 마찰 마모특성에 관한 연구 (A Study on the Friction and Wear Characteristics Engine Oil with Mo-DTP and Zn-DTP)

  • 김종호;강석춘;정근우;조원오
    • Tribology and Lubricants
    • /
    • 제7권1호
    • /
    • pp.46-54
    • /
    • 1991
  • As the additives of engine oil, Mo-DTP and Zn-DTP were studied by experimental works. These additives were added to the engine oil with various ratios, which was an attempt to find out the best ratio at which the wear and friction can be reduced effectively; Mo-DTP is belived to be able to decrease the frictioh of the sliding metal, while Zn-DTP is known as a very stable additive for oxidation at high temperature in addition to the good antiwear property. This study showed that the optimum addition ratio of Mo-DTP and Zn-DTP is 3:2. This oil made it possible to slide steel with minimum wear and low friction over various lovels of load at moderate temperature. But as the oil temperature increased, the wear slid with Mo-DTP oil was increased more. The reason of this result was that Mo-DTP deteriorated the property of oil at high temperature by the higher oxidation and viscosity of Mo-DTP oil than that of Zn-DTP oil.

중온형 고체산화물 연료전지를 위한 YSZ 전해질에서의 고성능 공기극 연구 (Study on high performance cathode on YSZ electrolyte for intermediate-temperature solid oxide fuel cells(IT-SOFC))

  • 이창보;배중면
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.368-371
    • /
    • 2006
  • [ $La_{0.8}Sr_{0.2}Co_{1-x}Mn_xO_3$ ] cathode as a high performance cathode on YSZ electrolyte was studied by analyzing impedance spectra. It was shown that cathode property of $La_{0.8}Sr_{0.2}Co_{1-x}Mn_xO_3$ is bet ter than that of$La_{0.8}Sr_{0.2}CoO_3$. At $700^{\circ}C$ in air environment, $La_{0.8}Sr_{0.2}Co_{0.4}Mn_{0.6}O_3$ cathode on CGO- layered YSZ electrolyte showed very low area specific resistance of $0.14{\Omega}cm^2$, which is low enough for intermediate-temperature sol id oxide fuel cells. This is because material properties of ionic conductivity and thermal expansion compatibility with electrolyte were optimized. Judging from activation energy and oxygen part i al pressure dependance of cathode property, it was noted that oxygen surface exchange kinetics is dominantly influential on cathode property in higher temperature region than $700^{\circ}C$ and oxygen self-diffusion in cathode material is more influential in lower temperature region.

  • PDF