• Title/Summary/Keyword: high-strength concrete high-rise building

Search Result 159, Processing Time 0.027 seconds

Structural Design of High-Rise Concrete Condominium with Wall Dampers for Vibration Control

  • Tsushi, Takumi;Ogura, Fumitaka;Uekusa, Masahiro;Kake, Satoshi;Tsuchihashi, Toru;Yasuda, Masaharu;Furuta, Takuya
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.3
    • /
    • pp.201-209
    • /
    • 2019
  • This paper presents a structural design of the "(Tentative Name) Toranomon Hills Residential Tower" which is currently under construction in Tokyo. The building is a reinforced concrete high-rise residential complex building with 54 stories above ground, 4 basement levels, and a building height of about 220 m. It is a requirement to provide the highest grade of residence in Japan, and in terms of the structural design, it is required to provide wide and comfortable spaces with high seismic performance. These requirements are satisfied by providing a total of 774 vibration control walls of two types. Also, to further improve the structural performance, steel fibers at the rate of 1.0vol% are provided in the ultra-high strength concrete used in the column members.

An Experimental Study on the Fire Resistance and Mechanical Properties of ECC Permanent Form (ECC 영구거푸집의 내화성능 및 역학적 특성에 관한 실험적 연구)

  • Kim, Yong-Ro;Song, Young-Chan;Oh, Jae-Keun;Kim, Jae-Hwan;Kim, Ook-Jong;Lee, Do-Bum
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05c
    • /
    • pp.75-78
    • /
    • 2009
  • It was investigated fire resistance properties and mechanical properties of high strength concrete column using ECC(Engineered Cementitious Composites) permanent form by KS F 2257 Methods of fire resistance test for elements of building construction and compression test for application of precast concrete column method of high rise building in this study. As a test result, it was appeared that ECC permanent form is available as fire resistance method of high strength concrete and new precast concrete construction method for facilitating construction of high rise building.

  • PDF

Review on the Fire Resistance and Pumpability Performance of Fiber Reinforced High Strength Concrete

  • Kwon, Hae-Won;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.1
    • /
    • pp.58-65
    • /
    • 2013
  • Currently, many high-rise buildings are built in Korea for land-efficient utilization and vista. In high-rise buildings this tall, the use of high-strength concrete is essential to reduce the cross-section of structure members and secure axial load. However, this high strength concrete is vulnerable to spalling by fire, due to the water vapor pressure caused by the very high temperature in fire. To prevent this, the main method used is to reinforce the concrete with fiber. However, there has been little research on the pumpability of fiber reinforced high strength concrete. For this reason, this study features a performance review based on the properties and pumpability of fiber reinforced high strength concrete. In addition, the parameter of rheology was measured by extracting mortar from the concrete, and friction factor was measured through a 400 m horizontal pipe pumping test using the fiber reinforced high strength concrete. The basic information on fiber reinforced high strength concrete that we obtain through the experiments and review will contribute to the field.

The Application of High Strength Concrete in Batcher Plant and its Workability (레미콘 공장에서 적용 가능한 고강도 콘크리트 및 시공성에 관한 연구)

  • Kim, Jeong-Sik;Kim, Bong-Hyun;Jung, Jin;Lee, Jae-Sam;Kang, Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.69-74
    • /
    • 1998
  • Concrete has a many problems to apply high rise building of its low strength to weight and low ductility, compared to steel products. Therefore, it is necessary to make high strength concrete for applying to night rise building. In the experiment, the high strength concrete was made in variable of unit weight of binder, water to binder ratio(W/B), and sand to aggregate ratio(S/a) using batcher plant. As a result, it was possible to make high strength concrete using only materials for ordinary concrete without admixtures such like silica fume in batcher plant.

  • PDF

Design of High Strength Concrete Filled Tubular Columns For Tall Buildings

  • Liew, J.Y. Richard;Xiong, M.X.;Xiong, D.X.
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.3
    • /
    • pp.215-221
    • /
    • 2014
  • Ultra-high strength concrete and high tensile steel are becoming very attractive materials for high-rise buildings because of the need to reduce member size and structural self-weight. However, limited test data and design guidelines are available to support the applications of high strength materials for building constructions. This paper presents significant findings from comprehensive experimental investigations on the behaviour of tubular columns in-filled with ultra-high strength concrete at ambient and elevated temperatures. A series of tests was conducted to investigate the basic mechanical properties of the high strength materials, and structural behaviour of stub columns under concentric compression, beams under moment and slender beam-columns under concentric and eccentric compression. High tensile steel with yield strength up to 780 MPa and ultra-high strength concrete with compressive cylinder strength up to 180 MPa were used to construct the test specimens. The test results were compared with the predictions using a modified Eurocode 4 approach. In addition, more than 2000 test data samples collected from literature on concrete filled steel tubes with normal and high strength materials were also analysed to formulate the design guide for implementation in practice.

A Study On the Mix Design and Quality Control System of High Strength Concrete for the Construct ion of High Rise Complex Structure (초고층 주상복합구조물에 적용한 고강도 콘크리트의 배합설계 및 품질관리 시스템에 관한 연구)

  • Kim, Sun-Gu;Lee, Sang-Soo;Won, Cheol;Park, Sang-Joon;Kim, Dong-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2001.11a
    • /
    • pp.40-45
    • /
    • 2001
  • The purposes of this study were mix design and quality control of high strength concrete for the construction of high rise complex structure. Desired performances of this high strength concrete were slump flow 50$\pm$10cm, air content 4.5$\pm$1.5% and design strength 400kgf/$cm^2$. Experimental flow was that optimal mix design was selected in the indoor experiment and after that, producing test was done in the batcher plant. Excel lent results of experiment was obtained from binder content 475kg/$m^2$ with replacement ratio 10% of fly ash. The results of field application of high strength concrete was sufficiently satisfied both flowability and compressive strength.

  • PDF

An Experimental Study on the Fire Resistance Properties of High Strength Concrete using Fiber for Field Application (현장 적용을 위한 섬유혼입 고강도콘크리트의 내화특성에 관한 실험적 연구)

  • Kim, Yong-Ro;Song, Young-Chan;Jungi, Yang-Hee;Kim, Ook-Jong;Lee, Do-Bum
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.187-191
    • /
    • 2008
  • It is necessary to develop a technology for effectively controling explosive spalling of high strength concrete caused increasing construction of high rise building and putting up the fireproof standard of high strength concrete by MLTM (Ministry of Land, Transport and Maritime Affairs). Accordingly, it was investigated basic properties such as slump, air content and compressive strength, and fire resistance properties of high strength concrete using polypropylene fiber for field application as a countermeasure for explosive spalling of concrete on fire in this study, As a test result, it was confirmed that PP fiber is available as fire resistance method of high strength concrete.

  • PDF

Mechanical Properties and Mix Proportion of High-Strength Concrete over 60MPa for PSC Bridges (PSC 교량용 설계강도 60 MPa 이상 고강도 콘크리트의 실용화를 위한 배합 및 역학적 특성에 관한 연구)

  • Lee, Joo-Ha;Jung, Hyun-Suck;Cheong, Hai-Moon;Ahn, Tae-Song;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.9-12
    • /
    • 2006
  • Many researches have been carried out on development of high-strength concrete, but most researches have been focused on building structures such as a high-rise building. However today, the demand of high-strength concrete for civil structures like a PSC bridge is increasing steadily. In addition, the current design code based on experimental results of normal strength concrete needs to be modified for high-strength concrete structures. Therefore, it is necessary to perform a research on mechanical properties and mix proportion of high-strength concrete suitable for PSC bridges. The primary purpose of this study was to develop the high-strength concrete mixtures which can be applied to PSC bridges and to evaluate mechanical properties of high-strength concrete.

  • PDF

A Experimental Study on the Fire Resistant Performance of the High Strength Concrete with Loading and Unloading test (재하 및 비재하 내화 실험을 통한 고강도콘크리트의 내화성능에 관한 실험적 연구)

  • Kim, Woo-Jae;Kim, Hyun-Bae;Kim, Kyu-Yong;Kim, Young-Sun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.61-64
    • /
    • 2009
  • Recently, the higher buildings are, the stronger concrete are used. Ultra high strength concrete have the possibility of spalling when a fire breaks out. so the fire-resistance performance is necessary to use the ultra high strength concrete on the high-rise building. On this study, the heating test for the concrete with loading/unloading is performed for ultra high strength concrete using nylon fiber. The heating test followed by ISO-834 heating curve on the real-size specimen and the strength of concrete are 60, 80, 100, 200 MPa.

  • PDF

Design Considerations for Concrete High-Rise Buildings

  • Chung, Kwangryang;Park, Chulho;Kim, Dohun
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.3
    • /
    • pp.187-193
    • /
    • 2016
  • Busan's Haeundae Resort project, which is currently being constructed by POSCO E&C, comprises the 101-story Landmark Tower and two 85-story residential towers. Presently, foundation and basement construction is complete, with a final completion date set for 2019. Considerations about the construction and design of the three reinforced concrete high-rise buildings will be discussed in this paper.