• Title/Summary/Keyword: high-speed railway system

Search Result 1,180, Processing Time 0.024 seconds

Analysis of the Vibration of High Speed Trains and the Irregularity of Railway Using a Wavelet-based Frequency Response Function (웨이브렛 기반 주파수 응답함수를 이용한 고속철도차량의 진동 및 궤도불규칙 특성 분석)

  • Lee, Jun-Seok;Choi, Sung-Hoon;Kim, Sang-Soo;Park, Choon-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.766-771
    • /
    • 2008
  • In this paper, the vibration of high speed trains and the irregularity of railway are examined using a wavelet-based frequency response function. To investigate their characteristics, non-stationary acceleration data are acquired and processed using the wavelet transform. Also, the railway irregularity is examined by acquiring the data from the on-board laser-based measurement system. The correlation between the train vibration and the railway irregularity has been investigated. From the analysis, the wavelet-based frequency response function is a promised method for the dynamic characteristics of high speed trains.

  • PDF

Random vibration analysis of train-slab track-bridge coupling system under earthquakes

  • Zeng, Zhi-Ping;He, Xian-Feng;Zhao, Yan-Gang;Yu, Zhi-Wu;Chen, Ling-Kun;Xu, Wen-Tao;Lou, Ping
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.1017-1044
    • /
    • 2015
  • This study aimed to investigate the random vibration characteristic of train-slab track-bridge interaction system subjected to both track irregularities and earthquakes by use of pseudo-excitation method (PEM). Each vehicle subsystem was modeled by multibody dynamics. A three-dimensional rail-slab- girder-pier finite element model was created to simulate slab track and bridge subsystem. The equations of motion for the entire system were established based on the constraint condition of no jump between wheel and rail. The random load vectors of equations of motion were formulated by transforming track irregularities and seismic accelerations into a series of deterministic pseudo-excitations according to their respective power spectral density (PSD) functions by means of PEM. The time-dependent PSDs of random vibration responses of the system were obtained by step-by-step integration method, and the corresponding extreme values were estimated based on the first-passage failure criterion. As a case study, an ICE3 high-speed train passing a fifteen-span simply supported girder bridge simultaneously excited by track irregularities and earthquakes is presented. The evaluated extreme values and the PSD characteristic of the random vibration responses of bridge and train are analyzed, and the influences of train speed and track irregularities (without earthquakes) on the random vibration characteristic of bridge and train are discussed.

Dynamic Analysis of PSC Bridge for a High-Speed Railway Vehicle Using Improved 38-Degree of Freedom Model (개선된 38자유도 차량모델을 이용한 고속철 PSC교량의 동적거동해석)

  • Oh, Soon-Taek;Sim, Young-Woo;Lee, Dong-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.797-803
    • /
    • 2010
  • A dynamic analysis procedure is developed to provide a better estimation of the dynamic responses of pre-stressed concrete (PSC) box girder bridges on the Korea high speed railway. Particularly, a three dimensional numerical model including the structural interaction between high speed vehicles, bridges and railway endures to analyze accurately and evaluate with in-depth parametric studies for dynamic responses of bridge due to the high speed railway vehicles. Three dimensional frame element is used to model the PSC box girder bridges, simply supported span lengths 40 m. The high-speed railway vehicles (K-TGV) including a locomotive are used as 38-degree of freedom system. Three displacements (vertical, lateral, and longitudinal) as well as three rotational components (pitching, rolling, and yawing) are considered in the 38-degree of freedom model. The dynamic analysis by Runge-Kutta method which are able to analyze considering the dynamic impact factors are compared and contrasted. It is proposed as an empirical formula that the impact factors damaged the bridge load-carrying capacities occurs to the bride due to high-speed vehicle.

A case study on the increasing load capacity of AT Feeder system with speed-up train (고속열차 투입에 따른 AT급전계통의 부하용량증가에 관한 사례연구)

  • Na, Youn-Il;Han, Seong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.694-698
    • /
    • 2005
  • The operation speed improvement of the train in electric railway must pursue continuously and need the investigation of whole railway system whole. The high-speed of the train is related to not only vehicle technique but also the infrastructure, signal system, operation technique, the trolley line and catenary, economical efficiency. Specially, in case of electric railway, we have to consider a technical investigation which is current collection efficiency improvement, voltage drop countermeasure, equipment capacity, track force, signal system. In this paper, we presents the technical investigation of AT feeder system in order to achieve high speed train in exist real railroad. We proved this approach which will use the whole domestic lines in the future.

  • PDF

A study on Test and Evaluation & Technology of Brake Control System in High Speed Railway (고속철도 제동제어 시험평가기술 방법에 대한 연구)

  • Shin Yu-Jeong;Choi Kyung-Jin
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.103-108
    • /
    • 2005
  • Since the braking system of rolling stock is directly linked to it's safety, ensuring reliability of braking system and evaluation of performance of it are very important. To develope the performance of braking system, it is required advanced technology and gradually various factors in the field test result. This study is designed to analyze the air pressure control about braking force in rolling stock, also, by comparing braking force of KTX with that of high speed train. This paper suggests to establish a method of computation of braking force form the air pressure control. And The high speed train researches into patterns of braking system such as the train of speed up and introduction of electric and pneumatic braking system.

  • PDF

Fatigue Crack Growth and Fracture behavior of Rail Steels

  • Seo, Jung Won;Kwon, Seok Jin;Lee, Dong Hyeong;Kwon, Sung Tae;Choi, Ha Yong
    • International Journal of Railway
    • /
    • v.5 no.3
    • /
    • pp.129-134
    • /
    • 2012
  • Contact fatigue damages on the rail surface, such as head checks and squats are a growing problem. The fatigue cracks forming on the contact surface grow according to load and lubricating conditions and may end up breaking the rail. Rail fracture can be avoided by preventing the cracks from reaching the critical length. Therefore, the crack growth rate needs to be estimated precisely according to the conditions of the track and load to develop a maintenance plan against rail damages. Therefore, it is important to understand the mechanism of cracks initiation and growth on a rail due to repetitive rolling contact. In this study, we have investigated the crack growth behavior on the rail surface by using the twin-disc tests and the finite element analysis.

Dynamics of Track/Wheel Systems on High-Speed Vehicles

  • Kato Isamu;Terumichi Yoshiaki;Adachi Masahito;Sogabe Kiyoshi
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.328-335
    • /
    • 2005
  • For high speed railway vehicles, we consider a vibration of flexible track/wheel system. It is very important to deal with the complex phenomena of high-speed vehicles that can be occurred in the vertical vibration of the system. From a viewpoint of multibody dynamics, this kind of problem needs accurate analysis because the system includes mutual dynamic behaviors of rigid body and flexible body. The simulation technique for the complex problems is also discussed. We consider the high-speed translation, rail elasticity, elastic supports under the rail and contact rigidity. Eigen value analysis is also completed to verify the mechanism of the coupled vertical vibration of the system.

Temperature Measurement Method of Main Transformer for High Speed Railway (고속철도차량 주변압기의 온도측정방법)

  • Han, Young-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.448-451
    • /
    • 2003
  • For this research, we developed the hardware and software of the measurement system for on-line test and evaluation. The software controls the hardware of the measurement data and acts as interface between users and the system hardware. In this paper, we is studied for temperature measurement of main transformer. In order to this test is developed measurement system. Using this system, we obtained important result for main transformer temperature.

  • PDF

Considerations in the reliability improvement against Circulation Current in the Catenary System for Electirc Railway of Korea (전차선로시스템의 순환전류에 대한 안정성 향상에 관한 고찰)

  • Kim, In-Cheol;Kang, Seung-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2006.05a
    • /
    • pp.24-26
    • /
    • 2006
  • In these days, Korea Railway apply simple catenary system to general lines and high speed lines of Korea Electric Railway. Circulation Current in catenary system frequently bring undesirable consequences. Namely, the Connector wire has many problems according to a flow of excessive circulation (or traction current) and a sudden rise of temperature on catenary when electric car or locomotive is running in high speed. The occurrence of events by the load increasement do considerable damages to peoples, organizations and systems. In this paper, we proposed the improved changes on the catenary system of a improvement and change of a messenger wire protector, improvement of connector wire,s institution angle and of a replacement the connector wire with a dropper. A case of Circulation Current continually has broken out in Yongdungpo Electric Office's own bailiwick. By or through the medium of these obstacles, we have further use of many studies and considering countermeasures. Therefore, we have to deal with the question in design and execution of catenary system for High Speed Railway because we will spend a lot of time and more money for maintenance than for construction of that.

  • PDF

A Study on Voltage Drop Compensation by STATCOM Considering Dynamic Characteristics of the 3-Phase Induction Motor in Electric Railway Systems (전기철도 3상유도전동기의 기동특성을 고려한 STATCOM에 의한 전압강하 보상에 관한연구)

  • Hwang, Sung-Ho;Oh, Min-Hyuk;Lee, Byung-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.337-339
    • /
    • 2005
  • The purpose of this paper is to compensate the voltage drop of the power system in the AC High-Speed Railway (HSR). Reactive power compensation is often the most effective way to improve system voltage drop. The suitable modeling of the electric railway system should be applied to the EMTP. the dynamic characteristics of 3-Phase Induction Motor in Electric Railway Systems is considered for precise modeling. it is shown through EMTP simulation that voltage drop can be compensated effectively by STATCOM.

  • PDF