• Title/Summary/Keyword: high-rise flat plate slab

Search Result 10, Processing Time 0.026 seconds

Improvement of Shear Performance for High Ductile Fiber-Reinforced Mortar Slab-Column Connection in Flat Plate Structural System (고인성 복합섬유 모르타르를 이용한 플랫 플레이트 구조 슬래브-기둥 접합부의 전단성능 개선)

  • Ha Gee Joo;Kim Yun Yong;Shin Jong Hak;Yang Seung Hyeok;Hong Kun Ho;Kim Joung Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.145-148
    • /
    • 2005
  • Recently the construction of high-rise reinforced concrete building is progressively increased as the social demands. It is significantly important factors such as economy, the safety of structure, and the flexibility of internal space. Therefore new structural system is also required to be attained the reduction of story height, the flexibility and efficient use of space. The most suitable structural system is with the economy and flexibility, flat plate slab system in high-rise reinforced concrete building. In this research, it was focused in the improvement of shear performance in the flat plate system using high ductile fiber reinforced mortar. It was evaluated the shear performance in the critical region of slab-column connection. The flat plate system, designed by the high performance and safety, was developed as a new technique in the application of high-rise R/C building.

  • PDF

Prediction and Evaluation on Inequality Shortening and Long-term Deflection of High-rise Flat Plate Structure using 3D Finite Element Analysis (3차원 유한요소해석을 이용한 고층 무량판 슬래브 구조물의 부등축소량 및 장기처짐 예측 평가)

  • Shim, Hak-Bo;Park, Soon-Jeon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.159-160
    • /
    • 2020
  • Flat plate structures are designed in the form of long span due to the development of construction materials and the improvement of construction technology. However, a high-rise structure of a flat plate of 50 less floors is constructed without detailed review of the inequality shortening, long-term deflection of the slab, and cracks. Therefore, it is possible to examine the case of defects in the structure due to deformation and damage of non-structures such as crack and leak, deflection of the door frame, and deformation of equipment ducts. In this study, it is a high-rise structure, and the inequality shortening and long-term deflection of the slab of the flat plate structure were evaluated through finite element analysis, and it was confirmed that prior precision analysis and correction during construction is necessary.

  • PDF

Ductility of Column-Slab eoint in R/C Flat Plate System (플랫 플레이트 구조의 기둥.슬래브 접합부 연성에 관한 연구)

  • 김형기;박복만
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.113-119
    • /
    • 2000
  • The R/C flat plate system provides architectural flexibility, clear space, reduced building height, simple formwork, which consequently enhance constructibility. One of the serious problems in the flat plate system is brittle punching shear failure due to transfer of shear force and unbalanced moments in column-slab joint. Recently, the flat plate system accompanied with shear walls to resist the lateral loads is applied to high-rise buidings. Although the flat plate system is not considered in design as part of the lateral load-resisting system, it is required that this system keeps the ductile behavior for the lateral displacement of the building. However, it is unclear whether the column-slab joint possesses ductility enough to survive the lateral deformation. The objective of this paper is to investigate the major parameters that influence the ductility of R/C flat plate system by examining the existing experiments on column-slab joint. The effects of gravity load and shear reinforcement on the ductility of the flat plate system are presented.

Development for Connection Details between Flat Plate Slab and H-Steel Column (무량판 슬래브와 H형강 기둥 접합부 상세 개발)

  • Yoon, Myung-Ho;Lee, Yoon-Hee
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.22-27
    • /
    • 2014
  • The flat plate slab system have many good features, which are design flexibilities, saving of story-height and economy of construction etc. But the study of flat plate slab system for H-steel column have been rare both at home and abroad. Recently high-rise residential and commercial buildings have been constructed in urban areas in Korea. The suggested dowel connection system is more likely to adoptable because it remarkably contribute to save inter story height and also to have many advantages compared with conventional steel works such as H-Steel frame + Deck plate slab system. This study aims at developing design method and program for connection between H-Steel column and flat plate slab system, which contribute to save significantly inter-story height.

Analysis of Seismic Performance of Slim Flat Plate System in High-rise Hybrid Structural System (슬림형 바닥시스템을 이용한 고층 복합구조의 내진성능에 관한 해석적 연구)

  • Ha Gee Joo;Park Hyo Sun;Park Joung Hyen;Choi Kyung Ryeol;Kim Dae Joung;Jung Jea Kwang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.77-80
    • /
    • 2005
  • Recently the construction of high-rise hybrid type building is progressively increased as the social demands. It is significantly important factors such as economy, the safety of structure, and the flexibility of internal space. Therefore new hybrid structural system, using slim flat plate system, is also required to be attained the reduction of story height, the flexibility and efficient use of space. The most suitable structural system is ,with the economy and flexibility, flat plate system in high-rise hybrid type building. But it was focused in the seismic performance for high performance flat plate system in high-rise hybrid type building. Therefore, in the study, to develop the new flat-plate system with high ductile, durable, good performance for the applications. It was evaluated the seismic performance in the critical region of slab-column connection. And then high performance flat plate system, designed by the economy and safety, was developed as a new technique in the application of high-rise hybrid type building.

  • PDF

Ductility Evaluation of Flat Plate Slab- Precast Concrete Shell Column Connection (플랫 플레이트 슬래브-중공 PC기둥 접합부의 연성평가)

  • Yang, Won-Jik;Park, Jin-Young;Yi, Waon-Ho;Ryu, Hong-Sik;Oh, Sang-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.75-76
    • /
    • 2009
  • Recently, Construction Business, is changing very quickly, exceedingly needs to slim down the expensive by material costs and term of works. Because of that reason, new technologies of construction studies are very popular. It is part of a Shell PC column. Therefore, intend of study was to investigate the response of column-slab connection of Shell PC column and flat plate slab that has been widely used in high rise buildings.

  • PDF

Punching Shear Strength of Slab-Column Interior Connection Considering Anchorage Performance of Shear Reinforcements (전단보강재의 정착성능을 고려한 슬래브-기둥 내부접합부의 뚫림전단강도)

  • Jung, Hyung-Suk;Choi, Hyun-Ki;Chung, Joo-Hong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.51-58
    • /
    • 2022
  • Flat plate slab is cost-efficient structural system widely used in high rise building, apartment and parking garages. But flat plate-column connections are so weak against punching shear failure that it may cause collapse of overall structure. In this study, spiral type shear reinforcement which increases the shear strength and ductility of the plate-column connection and has good workability was proposed. And experimental test was performed to verify the punching shear capacity of spiral type shear reinforcement. The current code does not accurately estimate the punching shear strength of slab-column connection with shear reinforcement because slab is so slender that punching failure may occurred before shear reinforcement reached yield stress. Therefore modified equation of ACI code for punching shear strength was proposed base on finite element analysis using LUSAS program, and data analysis from CEB-FIP database.

A Study on Unbalanced Moment of Flat Plate Exterior Connections (플랫 플레이트 외부접합부의 불균형모멘트에 관한연구)

  • Choi, Hyun-Ki;Beck, Seong-Woo;Back, Young-Soo;Jin, Eon-Sik;Choi, Chang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1-4
    • /
    • 2008
  • Flat plate slab has been widely used in high rise building for its remarkable advantages. However, Flat plate structures under lateral load are susceptible to punching shear of the slab-column connection. Exterior slab-column connections has an unsymmetrical critical section for eccentric shear of which perimeter is less than that of interior connection, and hence, around the connection, unbalanced moment and eccentric shear are developed by both gravity load and lateral loads. Therefore, exterior connections is susceptible to punching shear failure. For that reason, this study compare ACI 318-05 to CEB-FIP MC 90 that is based on experiment results and existing data of flat plate exterior connections. This study shows that compared to CEB-FIP MC 90 is more exact about eccentric shear stress, unbalanced moment and Both of all are not suitable in large column aspect ratio. Considering gravity shear ratio, These are suitable but design condition only consider gravity shear ratio. So these should be considered differences from change of design condition

  • PDF

Structural Design And Analysis of Haeundae Doosan We've The Zenith (해운대 두산 위브 더 제니스 구조설계)

  • Park, Ki-Hong;Park, Suk-Jin
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.93-98
    • /
    • 2008
  • Haeundae Doosan We've The Zenith project is adjacent to Suyoung-bay, now it is in the process of excavation and foundation work. The main use of the tower is residence which height is 300m and 80 floor, the highest residential reinforced concrete building through the Orient. It is comprised of 3 high- rised buildings and 1 low-rised building, the basement is 230m wide and 200m length sized mass structure. The lateral resistance system is acted effectively against the lateral load and satisfactorily against the wind vibration by the 4 direction extension of the center core wall($700{\sim}800mm$ thickness) and reinforced concrete column set around the slab. Flat-plate slab system(250mm thickness) is adjusted for the slab system and it enables effective work process and shortening the working term by minimizing the ceiling height and not needing to install perimeter beam and drop panel. The strength and serviceability of the structure is able to be monitored and estimated constantly through the health monitoring system during the construction and after the construction.

  • PDF