• Title/Summary/Keyword: high-resolution 3D seismic survey

Search Result 8, Processing Time 0.027 seconds

Fusion of 3D seismic exploration and seafloor geochemical survey for methane hydrate exploration (메탄 하이드레이트 탐사를 위한 3 차원 탄성파 탐사와 해저면 지구화학탐사의 융합 기술)

  • Nagakubo, Sadao;Kobayashi, Toshiaki;Fujii, Tetsuya;Inamori, Takao
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.37-43
    • /
    • 2007
  • The MH21 Research Consortium has conducted a high-resolution 3D seismic survey and a seafloor geochemical survey, to explore methane hydrate reservoirs in the eastern Nankai Trough, offshore Japan. Excellent geological information about shallow formations was obtained from the high-resolution 3D seismic survey, which was designed to image the shallow formations where methane hydrates exist. The information is useful in constructing a geological and geochemical model, and especially to understand the complex geology of seafloor, including geochemical manifestations and the structure of migration conduits for methane gas or methane-bearing fluid. By comparing methane seep sites observed by submersibles with seismic sections, some significant relationships between methane hydrate reservoirs, free gas accumulations below the seafloor, and seafloor manifestations are recognised. Bathymetric charts and seafloor reflection amplitude maps, constructed from seismic reflections from the seafloor, are also useful in understanding the relationships over a vast area. A new geochemical seafloor survey targeted by these maps is required. The relationships between methane hydrate reservoirs and seafloor manifestations are becoming clearer from interpretation of high-resolution 3D seismic data. The MH21 Research Consortium will continue to conduct seafloor geochemical surveys based on the geological and geochemical model constructed from high-resolution 3D seismic data analysis. In this paper, we introduce a basis for exploration of methane hydrate reservoirs in Japan by fusion of 3D seismic exploration and seafloor geochemical surveys.

지표 물리탐사법을 이용한 염/담수 영역의 고분해능 영상화

  • 박권규;신제현;박윤성;황세호
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.446-449
    • /
    • 2004
  • High resolution geophysical imaging to delineate costal aquifer and seawater- freshwater interface has been applied in Baesu-eup, Yeonggwang-gun, Jeolla province Electrical resistivity information from vertical electrical sounding and 2-D electrical resistivity survey is key parameter to map equivalent Nacl concentration map over the survey area. Seismic velocity from refraction tomographic survey, on the other hand, gives more reliable information on the subsurface stratagraphy than electrical resistivity methods which frequently suffer from low resolution due to masking effect. We imaged high-resolution 3-D structure of costal aquifer by correlating the electrical resistivity with seismic velocity, and mapped equivalent NaCl concentration map using resistivity and hydro-geological information from well logging.

  • PDF

Development of 3D Reverse Time Migration Software for Ultra-high-resolution Seismic Survey (초고해상 탄성파 탐사를 위한 3차원 역시간 구조보정 프로그램 개발)

  • Kim, Dae-sik;Shin, Jungkyun;Ha, Jiho;Kang, Nyeon Keon;Oh, Ju-Won
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.3
    • /
    • pp.109-119
    • /
    • 2022
  • The computational efficiency of reverse time migration (RTM) based on numerical modeling is not secured due to the high-frequency band of several hundred Hz or higher for data acquired through a three-dimensional (3D) ultra-high-resolution (UHR) seismic survey. Therefore, this study develops an RTM program to derive high-quality 3D geological structures using UHR seismic data. In the traditional 3D RTM program, an excitation amplitude technique that stores only the maximum amplitude of the source wavefield and a domain-limiting technique that minimizes the modeling area where the source and receivers are located were used to significantly reduce memory usage and calculation time. The program developed through this study successfully derived a 3D migration image with a horizontal grid size of 1 m for the 3D UHR seismic survey data obtained from the Korea Institute of Geoscience and Mineral Resources in 2019, and geological analysis was conducted.

Geophysical Methods applied for Gas Hydrate Exploration in the East Sea (동해 가스하이드레이트 탐사에 적용한 지구물리탐사 방법)

  • Lee, Ho-Young;Park, Keun-Pil;Yoo, Dong-Geun;Koo, Nam-Hyung;Kim, Won-Sik;Kim, Byoung-Yeop;Kan, Dong-Hyo;Kim, Han-Joon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.12a
    • /
    • pp.53-62
    • /
    • 2007
  • Preliminary gas hydrate surveys were carried out From 2000 to 2004 in the East Sea. Research results showed the geophysical evidence of gas hydrate existence. In 2005, Gas Hydrate R&D Organization was established and 10 year gas hydrate development program was initiated. In the $1^{st}$ stage of the program from 2005 to 2007, 6,600 L-km 2-D seismic survey was conducted in the $1^{st}$ year 2005, and $400\;km^2$ 3D survey was conducted in the $2^{nd}$ year 2006. Acquired seismic data were processed and seismic section and 3D cube were produced. By geophysical interpretation and velocity analysis, prospective areas were mapped and candidate drilling sites were recommended. For the precise interpretation, velocity was analyzed using AVO method, and BSR signal was analyzed using deconvolution method. For the prospective area, OBS and high-resolution seismic surveys were conducted. This presentation shows the introduction and examples of the research results of the geophysical methods applied for the gas hydrate exploration in the East Sea.

  • PDF

A Study on the Shallow Marine Site Survey using Seismic Reflection and Refraction Method (탄성파 반사법 및 굴절법을 이용한 천해저 지반조사에 대한 연구)

  • Shin, Sung-Ryul;Kim, Chan-Su;Jo, Churl-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.109-115
    • /
    • 2008
  • It is very important to estimate the physical properties of survey area and delineate the geological basement in marine site survey for the design of offshore structures. For the purpose of providing high quality data by means of engineering site survey, it is necessary to apply several survey techniques and carry out the integrated interpretation to each other. In this study, we applied single channel seismic reflection method and OBC (Ocean Bottom Cable) type seismic refraction method at shallow marine. We used a dual boomer-single channel streamer as a source-receiver in seismic reflection survey and airgun source-the developed OBC type streamer in seismic refraction survey. We made 24 channels OBC type streamer which has 4m channel interval and each channel is composed of single hydrophone and preamplifier. We tested the field applicability of the proposed method and applied the typical seismic data processing methods to the obtained reflection data in order to enhance the data quality and image resolution. In order to estimate the geological velocity distribution from refraction data, seismic refraction tomography technique was applied. Therefore, we could successfully perform time-depth conversion using the velocity information as an integrated interpretation. The proposed method could provide reliable geologic information such as sediment layer thickness and 3D basement depth map.

3-D Seismic Profiling (3차원 탄성파탐사)

  • Shon, Howoong
    • Economic and Environmental Geology
    • /
    • v.29 no.6
    • /
    • pp.739-744
    • /
    • 1996
  • 'Kite' is a newly developed single-channel seismic imaging system capable of producing high resolution three dimensional images of subbottom geology in one traverse of a survey region. The system consists of a horizontally towed hydrophone array and active source. The hydrophone array is towed axis perpendicular to ship direction and the airgun source at the end of the hydrophone array is excited at timed intervals during the progression. The construction of the three dimensional subbottom image was made simply by using conventional multichannel seismic reflection data processing techniques. Common source shot (CSS) gathers of the hydrophone traces are evaluated using Dix's equation for average interval velocity of each subbottom layer. From the interval velocity profile and the normal consolidation stress condition, values of shear modulus, porosity, and shear velocity are deduced from the chosen values of physical constants. The system has been successfully tested at several locations on the North Atlantic continental shelf.

  • PDF

Benchmark Test Study of Localized Digital Streamer System (국산화 디지털 스트리머 시스템의 벤치마크 테스트 연구)

  • Jungkyun Shin;Jiho Ha;Gabseok Seo;Young-Jun Kim;Nyeonkeon Kang;Jounggyu Choi;Dongwoo Cho;Hanhui Lee;Seong-Pil Kim
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.2
    • /
    • pp.52-61
    • /
    • 2023
  • The use of ultra-high-resolution (UHR) seismic surveys to preceisly characterize coastal and shallow structures have increased recently. UHR surveys derive a spatial resolution of 3.125 m using a high-frequency source (80 Hz to 1 kHz). A digital streamer system is an essential module for acquiring high-quality UHR seismic data. Localization studies have focused on reducing purchase costs and decreasing maintenance periods. Basic performance verification and application tests of the developed streamer have been successfully carried out; however, a comparative analysis with the existing benchmark model was not conducted. In this study, we characterized data obtained by using a developed streamer and a benchmark model simultaneously. Tamhae 2 and auxiliary equipment of the Korea Institute of Geoscience and Mineral Resources were used to acquire 2D seismic data, which were analyzed from different perspectives. The data obtained using the developed streamer differed in sensitivity from that obtained using benchmark model by frequency band.However, both type of data had a very high level of similarity in the range corresponding to the central frequency band of the seismic source. However, in the low frequency band below 60 Hz, data obtained using the developed streamer showed a lower signal-to-noise ratio than that obtained using the benchmark model.This lower ratio can hinder the quality in data acquisition using low-frequency sound sources such as cluster air guns. Three causes for this difference were, and streamers developed in future will attempt to reflect on these improvements.

Initial results from spatially averaged coherency, frequency-wavenumber, and horizontal to vertical spectrum ratio microtremor survey methods for site hazard study at Launceston, Tasmania (Tasmania 의 Launceston 시의 위험 지역 분석을 위한 공간적 평균 일관성, 주파수-파수, 수평과 수직 스펙트럼의 비율을 이용한 상신 진동 탐사법의 일차적 결과)

  • Claprood, Maxime;Asten, Michael W.
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.132-142
    • /
    • 2009
  • The Tamar rift valley runs through the City of Launceston, Tasmania. Damage has occurred to city buildings due to earthquake activity in Bass Strait. The presence of the ancient valley, the Tamar valley, in-filled with soft sediments that vary rapidly in thickness from 0 to 250mover a few hundreds metres, is thought to induce a 2D resonance pattern, amplifying the surface motions over the valley and in Launceston. Spatially averaged coherency (SPAC), frequency-wavenumber (FK) and horizontal to vertical spectrum ratio (HVSR) microtremor survey methods are combined to identify and characterise site effects over the Tamar valley. Passive seismic array measurements acquired at seven selected sites were analysed with SPAC to estimate shear wave velocity (slowness) depth profiles. SPAC was then combined with HVSR to improve the resolution of these profiles in the sediments to an approximate depth of 125 m. Results show that sediments thicknesses vary significantly throughout Launceston. The top layer is composed of as much as 20m of very soft Quaternary alluvial sediments with a velocity from 50 m/s to 125 m/s. Shear-wave velocities in the deeper Tertiary sediment fill of the Tamar valley, with thicknesses from 0 to 250m vary from 400 m/s to 750 m/s. Results obtained using SPAC are presented at two selected sites (GUN and KPK) that agree well with dispersion curves interpreted with FK analysis. FK interpretation is, however, limited to a narrower range of frequencies than SPAC and seems to overestimate the shear wave velocity at lower frequencies. Observed HVSR are also compared with the results obtained by SPAC, assuming a layered earth model, and provide additional constraints on the shear wave slowness profiles at these sites. The combined SPAC and HVSR analysis confirms the hypothesis of a layered geology at the GUN site and indicates the presence of a 2D resonance pattern across the Tamar valley at the KPK site.