• Title/Summary/Keyword: high-purity

Search Result 1,288, Processing Time 0.027 seconds

Cyclic process for the preparation of synthetic rutile and pure iron oxide from the domestic titaniferous magnetite ore (국내 부존의 함티탄자철광으로 부터 합성 rutile 및 고순도 철화산화물의 제조를 위한 순환 공정)

  • Lee, Chul-Tae;Ryoo, Young-Hong
    • Applied Chemistry for Engineering
    • /
    • v.2 no.4
    • /
    • pp.372-384
    • /
    • 1991
  • The sulfation of the domestic titaniferous magnetite ore with ammonium sulfate was investigated to find a cyclic process for the production of synthetic rutile and high purity iron oxide and to test the feasibility of ammonium sulfate being an alternative sulfation agent. The proper sulfation conditions were determined to be a temperature of $425^{\circ}C$, 2.5 hours of reaction time, the weight ratio of ammonium sulfate to titaniferous magnetite : 11, and particle size or titaniferous magnetite : -250 mesh. 90.4 % of $TiO_2$ and 85.3 % of iron were extracted from the titaniferous magnetite sulfated under these conditions by the water leaching. From the leachate $TiO_2$ of 93.8 % purity as a mixture of rutile and anatase and ${\alpha}-Fe_2O_3$ of 97.6 % purity were obtained.

  • PDF

Recrystallization Behavior of Aluminum Plates Depending on Their Purities (순도에 따른 Al 판재의 재결정 거동)

  • Lee, Hyun Woo;Ha, Tae Kwon;Park, Hyung-Ki;Min, Seok-Hong
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.688-695
    • /
    • 2016
  • Recrystallization behavior has been investigated for commercial purity AA1050 (99.5wt%Al) and high purity 3N Al (99.9wt% Al). Samples were cold rolled with 90% of thickness reduction and were annealed isothermally at 290, 315, and 350o C for various times until complete recrystallization was achieved. Hardness measurement and Electron Backscatter Diffraction(EBSD) analyses, combined with Grain Orientation Spread(GOS), were employed to investigate the recrystallization behavior. EBSD analysis combined with GOS were distinctly revealed to be a more useful method to determine the recrystallization fraction and to characterize the recrystallization kinetics. As the annealing temperature increased, recrystallization in AA1050 accelerated more than that process did in Al 3N. Both AA1050 and Al 3N showed the same temperature dependence of the n value of the Johnson-Mehl-Avrami-Kolmogorov equation(JMAK equation), i.e., n values increased as annealing temperature increased. Activation energy of recrystallization in AA1050 is about 176 kJ/mol, which is comparable with the activation energy of grain boundary migration in cold-rolled AA1050. This value is somewhat higher than the activation energy of recrystallization in Al 3N.

A study on performance and smoke emission characteristics by blending low purity methanol in a DI diesel engine with the EGR rates of 0, 12.8 and 16.5%

  • Syaiful, Syaiful;Bae, Myung-Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.701-710
    • /
    • 2013
  • The purpose of this study is to investigate experimentally the effect of low purity methanol (LPM) on performance and smoke emission characteristics by using a four-cycle, four-cylinder, water-cooled, direct injection diesel engine with EGR system. The experiments are performed by the change of engine load in the engine load ranges of 25 to 100% with an interval of 25% under the constant engine speed of 2000 rpm. The LPM in the fuel blends contained 24.88% water by volume. The blended fuel ratios of diesel oil to LPM are maintained at 100/0, 95/5, 90/10 and 85/15% on the volume basis. In this paper, EGR rates are varied in three conditions of 0, 12.8 and 16.5%. The result shows that the brake power of a blended fuel with 15% LPM is reduced more 11.1% than that of the neat diesel oil at the full load with the EGR rate of 16.5%. At this condition, also, the brake specific fuel consumption (BSFC) is increased by 3.2%, the exhaust gas temperature is decreased by 10.7%, the smoke opacity is decreased by 18.7% and the brake thermal efficiency is increased by 7.3%. The sharp reduction of smoke opacity for a blended fuel with the LPM content of 15% at the full load without EGR system is observed by 68.4% compared with that of the neat diesel oil due to the high oxygen content of LPM.

A Study on the costume Styles of Femme Fatale in Film Noir - focused on < Double Indemnity(1944) > - (필름 느와르에 나타난 팜므 파탈의 복식유형 연구 - <이중배상(1944)>을 중심으로 -)

  • Kim, Hye-Jeong
    • Journal of Fashion Business
    • /
    • v.15 no.4
    • /
    • pp.1-15
    • /
    • 2011
  • Femme Fatale in Film Noir is a wicked woman character who seduces the male partner to a ruin. In the film, the dress style is of extreme importance for the personality creation of the character as well as the development of the plot. With this background, I have looked over the Femme Fatale dress style that appears in the movie . First, it expresses Femme Fatale which stresses the feminine trait by a dress style with enlarged chest and hip parts and long, slim silhouette with tight waist and knee line. Second, the Femme Fatale with pretended purity presents narcissistic satisfaction like a saint virgin by wearing a neck-high one-piece dress embellished with frills, but the use of mirror represents self-alienation and the vanity of purity. Third, the Femme Fatale with its military dress style presents authoritative sternness which leads seduced male into ruin with its destructive power. Fourth, wearing jersey type or knitted wear that sticks to the body presents sensual Femme Fatale. Fifth, the tulle, chiffon, and white handkerchief used for the creation of grotesque Femme Fatale represents harmlessness and prohibition of immoral behavior, and the black gloves, pillbox, and the number on the tulle present her uneasy psychological state from the fear of being discovered after murdering her husband. On the other hand, the see-through tulle presents alluring sensual beauty. Sixth, the combination of the dialogue in the final sequence and drapery type as in Greek goddess represents the saint virgin of salvation who acknowledges her own fault and returns to her purity again. In addition, accessories and others made from shining material represent hidden conspiracy through simple dress and contradictory dynamics, and shoes embellished with bonbon, etc represent sexual implications in connection with male.

Membrane-Based Carbon Dioxide Separation Process for Blue Hydrogen Production (블루수소 생산을 위한 이산화탄소 포집용 2단 분리막 공정 최적화 연구)

  • Jin Woo Park;Joonhyub Lee;Soyeon Heo;Jeong-Gu Yeo;Jaehoon Shim;Jinhyuk Yim;Chungseop Lee;Jin Kuk Kim;Jung Hyun Lee
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.344-351
    • /
    • 2023
  • The membrane separation process for carbon dioxide capture from hydrogen reformer exhaust gas has been developed. Using a commercial membrane module, a multi-stage process was developed to achieve 90% of carbon dioxide purity and 90% of recovery rate for ternary mixed gas. Even if a membrane module with being well-known properties such as material selectivity and permeability, the process performance of purity and recovery widely varies depending on the stage-cut, the pressure at feed and permeate side. In this study, we verify the limits of capture efficiency at single-stage membrane process under various operating conditions and optimized the two-stage recovery process to simultaneously achieve high purity and recovery rate.

Study on the growth of 4H-SiC single crystal with high purity SiC fine powder (고순도 SiC 미분말을 적용한 4H-SiC 단결정 성장에 관한 연구)

  • Shin, Dong-Geun;Kim, Byung-Sook;Son, Hae-Rok;Kim, Moo-Seong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.383-388
    • /
    • 2019
  • High purity SiC fine powder with metal impurity contents of less than 1 ppm was synthesized by improved carbothermal reduction process, and the synthesized powder was used for SiC single crystal growth in RF heating PVT device at temperature above 2,100℃. In-situ x-ray image analyzer was used to observe the sublimation of the powder and single crystal growth behavior during the growth process. SiC powder was used as a source of single crystal growth, exhausted from the outside of the graphite crucible at the growth temperature and left graphite residues. During the growth, the flow of raw materials was concentrated in the middle and influenced the growth behavior of SiC single crystals. This is due to the difference in temperature distribution inside the crucible due to the fine powder. After the single crystal growth was completed, the single crystal ingot was cut into a 1 mm thick single crystal substrate and finely polished using a diamond abrasive slurry. A dark yellow 4H-SiC was observed overall of single crystal substrate, and the polycrystals generated in the outer part may be caused by the incorporation of impurities such as the bubble layer mixed in the process of attaching the seed crystal to the seed holder.

Assessment of Ni Catalyst Properties for Removal of O2 and CO Impurity in Inert Gas (불활성 가스의 O2와 CO 불순물 제거를 위한 Ni 촉매의 물성 평가)

  • Kim, Kwangbae;Jin, Saera;Kim, Eunseok;Lim, Yesol;Lee, Hyunjun;Kim, Seonghoon;Noh, Yunyoung;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.588-595
    • /
    • 2020
  • This study examined the catalytic property of Ni-catalyst used in the gas purifying process to manufacture inert gases of N2 and Ar with high-purity over 9N for semiconductor industrial applications. Two types of Ni-catalysts with a cylindrical shape (C1) and churros shape structure (C2) were compared for the assessment. Optical microscopy and FESEM were used to analyze the shape and microstructure of the Ni-catalyst. EDS, XRD, and micro-Raman characterization were performed to examine the composition and properties. BET and Pulse Titration analyses were conducted to check the surface area and catalytic property of the Ni-catalyst. From the composition analysis results, C1 contained a relatively large amount of graphite as an impurity, and C2 contained higher Ni contents than C1. From specific surface area analysis, the specific surface area of C2 was approximately 1.69 times larger than that of C1. From catalytic property analysis, outstanding performance in O2 and CO impurity removal was observed at room temperature. Therefore, C2, having low-impurity and large specific surface area, is a suitable catalyst for the high-purity inert gas process in the semiconductor industry because of its outstanding performance in O2 and CO impurity removal at room temperature.

High-purity Lithium Carbonate Manufacturing Technology from the Secondary Battery Recycling Waste using D2EHPA + TBP Solvent (이차전지 폐액으로부터 D2EHPA + TBP solvent를 활용한 탄산리튬 제조기술)

  • Dipak Sen;Hee-Yul Yang;Se-Chul Hong
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.21-32
    • /
    • 2023
  • Because the application of lithium has gradually increased for the production of lithium ion batteries (LIBs), more research studies about recycling using solvent extraction (SX) should focus on Li+ recovery from the waste solution obtained after the removal of the valuable metals nickel, cobalt and manganese (NCM). The raffinate obtained after the removal of NCM metal contains lithium ions and other impurities such as Na ions. In this study, we optimized a selective SX system using di-(2-ethylhexyl) phosphoric acid (D2EHPA) as the extractant and tri-n-butyl phosphate (TBP) as a modifier in kerosene for the recovery of lithium from a waste solution containing lithium and a high concentration of sodium (Li+ = 0.5 ~ 1 wt%, Na+ = 3 ~6.5 wt%). The extraction of lithium was tested in different solvent compositions and the most effective extraction occurred in the solution composed of 20% D2EHPA + 20% TBP + and 60% kerosene. In this SX system with added NaOH for saponification, more than 95% lithium was selectively extracted in four extraction steps using an organic to aqueous ratio of 5:1 and an equilibrium pH of 4 ~ 4.5. Additionally, most of the Na+ (92% by weight) remained in the raffinate. The extracted lithium is stripped using 8 wt% HCl to yield pure lithium chloride with negligible Na content. The lithium chloride is subsequently treated with high purity ammonium bicarbonate to afford lithium carbonate powder. Finally the lithium carbonate is washed with an adequate amount of water to remove trace amounts of sodium resulting in highly pure lithium carbonate powder (purity > 99.2%).

A Study on the Characteristics of Electro Polishing and Utility Materials for Transit High Purity Gas (청정도 가스 이송용 재료의 특성과 전해연마에 관한 연구)

  • Lee, Jong-Hyung;Park, Shin-Kyu;Yang, Seong-Hyeon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.3
    • /
    • pp.259-263
    • /
    • 2004
  • In the manufacture progress of LCD or semiconductor, there are used many kinds of gas like erosion gas, dilution gas, toxic gas as a progress which used these gas there are required high puritize to increase accumulation rate of semiconductor or LCD materials work progress of semiconductor or LCD it demand many things like the material which could minimize metallic dust that could be occured by reaction between gas and transfer pipe laying material, illumination of the surface, emition of the gas, metal liquation, welding etc also demand quality geting stricted. Material-Low-sulfur-contend (0.007-0010), vacuum-arc-remelt(VAR), seamless, high-purity tubing material is recommend for enhance welding lower surface defect density All wetted stainless steel surface must be 316LSS elecrto polishinged with ${\leq}0.254{\mu}m$($10.0{\mu}in$) Ra average surface finish, $Cr/Fe{\geq}1.1$ and $Cr_2O_3$ thickness ${\geq}25{\AA}$ From the AES analytical the oxide layer thickness (23.5~36 angstroms silicon dioxide equivalent) and chromum to iron ratios is similar to those generally found on electropolished stainless steel., molybdenum and silicon contaminants ; elements characteristic of stainless steel (iron, nickel and chromium); and oxygen were found on the surface Phosphorus and nitrogen are common contaminants from the electropolish and passivation steps.

  • PDF

A Synthesis of Mullite and Cordierite Ceramics by Solution-Polymerzation Route Based on PVA (PVA를 이용한 Solution-Polymerzation 합성법에 의한 Mullite, Cordierite 세라믹스의 합성)

  • 이용석;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.2
    • /
    • pp.151-157
    • /
    • 2004
  • Because of the excellent thermal and chemical properties of mullite and cordierite as the stable oxide ceramic materials, they were widely used from engineering materials to electronic materials. Notwithstanding of their high demands, mullite was synthesised because it is not existed in nature. It is also difficult to produce cordierite of fine powder with high purity due to the narrow range of synthetic temperature. Mullite was synthesised by solid state reaction. However, synthesized mullite has been inhomogeneous. Because of the facts, various synthetic methods have been studied so far including sol-gel method. The purpose of this study is to synthesis mullite and cordierite of fine powder with high purity at the lower temperature by solution-polymerization route using PVA as a polymer carrier, which is an economical method by using low cost materials. As a result, mullite and cordierite were produced with mono crystal phase at 1200$^{\circ}C$ and 1250$^{\circ}C$, respectively, and their surface area over 20 ㎡/g.