Browse > Article
http://dx.doi.org/10.5762/KAIS.2020.21.4.588

Assessment of Ni Catalyst Properties for Removal of O2 and CO Impurity in Inert Gas  

Kim, Kwangbae (Department of Materials Science and Engineering, University of Seoul)
Jin, Saera (WONIK HOLDINGS CO., LTD.)
Kim, Eunseok (Department of Materials Science and Engineering, University of Seoul)
Lim, Yesol (WONIK HOLDINGS CO., LTD.)
Lee, Hyunjun (WONIK HOLDINGS CO., LTD.)
Kim, Seonghoon (WONIK HOLDINGS CO., LTD.)
Noh, Yunyoung (WONIK HOLDINGS CO., LTD.)
Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.21, no.4, 2020 , pp. 588-595 More about this Journal
Abstract
This study examined the catalytic property of Ni-catalyst used in the gas purifying process to manufacture inert gases of N2 and Ar with high-purity over 9N for semiconductor industrial applications. Two types of Ni-catalysts with a cylindrical shape (C1) and churros shape structure (C2) were compared for the assessment. Optical microscopy and FESEM were used to analyze the shape and microstructure of the Ni-catalyst. EDS, XRD, and micro-Raman characterization were performed to examine the composition and properties. BET and Pulse Titration analyses were conducted to check the surface area and catalytic property of the Ni-catalyst. From the composition analysis results, C1 contained a relatively large amount of graphite as an impurity, and C2 contained higher Ni contents than C1. From specific surface area analysis, the specific surface area of C2 was approximately 1.69 times larger than that of C1. From catalytic property analysis, outstanding performance in O2 and CO impurity removal was observed at room temperature. Therefore, C2, having low-impurity and large specific surface area, is a suitable catalyst for the high-purity inert gas process in the semiconductor industry because of its outstanding performance in O2 and CO impurity removal at room temperature.
Keywords
Ni-Catalyst; High-Purity; Impurity-Removal; BET; Pulse-Titration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Lin, L. Heng, H. Yin, B. Fang, J. Ni, X. Wang, J. Lin, L. Jiang, "Effects of Using Carbon-Coated Alumina as Support for Ba-Promoted Ru Catalyst in Ammonia Synthesis", Industrial & Engineering Chemistry Research, Vol.58, No.24, pp. 10285-10295, May 2019. DOI:https://doi.org/10.1021/acs.iecr.9b01610   DOI
2 K. Kato, Y. Shionoiri, Y. Sekine, K. Furutani, T. Hatano, T. Aoki, M. Sasaki, H. Tomatsu, J. Koyama, S. Yamazaki, "Evaluation of Off-State Current Characteristics of Transistor Using Oxide Semiconductor Material, Indium-Gallium-Zinc Oxide", Japanese Journal of Applied Physics, Vol.51, No. R2, pp.021201-021207, Jan. 2012. DOI:https://doi.org/10.1143/JJAP.51.021201   DOI
3 A. Ostroverkh, V. Johanek, M. Dubau, P. Kus, I. Hhalakhan., "Optimization of ionomer-free ultra-low loading Pt catalyst for anode/cathode of PEMFC via magnetron sputtering", International Journal of Hydrogen Energy, Vol.44, No.35, pp.19344-19356, Jul. 2019. DOI:https://doi.org/10.1016/j.ijhydene.2018.12.206   DOI
4 F. Chen, D. He, L. Chen, X. Chang, D. Z. Wang., "Chirality-Economy Catalysis: Asymmetric Transfer Hydrogenation of Ketones by Ru-Catalysts of Minimal Stereogenicity", ACS Catalysis, Vol.9, No.6, pp.5562-5566, May 2019. DOI:https://doi.org/10.1021/acscatal.9b01535   DOI
5 Jens, R. R.-N., "Activity of Nickel Catalysts for Steam Reforming of hydrocarbons", Journal of Catalysis, Vol.31, No.2, pp.173-199, Nov. 1973. DOI:https://doi.org/10.1016/0021-9517(73)90326-6   DOI
6 S. Fang, Z. Cui, Y. Zhu, C. Wang, J. Bai, X. Zhang, "In situ synthesis of biomass-derived Ni/C catalyst by self-reduction for the hydrogenation of levulinic acid to ${\gamma}$-valerolactone", Journal of Energy Chemistry, Vol.37, pp.204-214, Oct. 2019. DOI:https://doi.org/10.1016/j.jechem.2019.03.021   DOI
7 J. Chen, P. C. Hyayes, "Mechanisms and Kinetics of Reduction of Solid NiO in CO/$CO_{2}$ and CO/Ar Gas Mixtures", Metallurgical and Materials Transactions B, Vol.50B, No.6, 2623-2635, Dec. 2019. DOI:https://doi.org/10.1007/s11663-019-01662-5
8 Y. Oh, H. Roh, K. Jun, Y. S. Baek, "A highly active catalyst, $Ni/Ce-ZrO_{2}=_-Al_{2}O_{3}$, for on-site $H_{2}$ generation by steam methane reforming: pretreatment effect", International Journal of Hydrogen Energy, Vol.28, pp.1387-1392, Dec. 2013. DOI:https://doi.org/10.1016/S0360-3199(03)00029-6   DOI
9 A. I. Tsyganok, T. Tsunoda, S. Hamakawa, K. Suzuki, K. Takehira, "Dry reforming of methane over catalysts derived from nickel-containing Mg-Al layered double hydroxides", Journal of Catalysis, Vol.213, No.2, pp.191-203, Jan. 2003. DOI:https://doi.org/10.1016/S0021-9517(02)00047-7   DOI
10 A. Borodzinski, M. Bonarowska, "Relation between Crystallite Size and Dispersion on Supported Metal Catalysts", Langmuir, Vol.13, No.21 5613-5620, Oct. 1997. DOI:https://doi.org/10.1021/la962103u   DOI
11 E. Erdogan, M. Kundakcl, A. Kasapoglu, E. Gur, "p-Si(100)/InGaN thin film structure and investigation of its physical properties: $N_{2}$ gas flow effect", Materials Today: Proceedings, Vol.18, No.5, pp.1868-1874 2019. DOI:https://doi.org/10.1016/j.matpr.2019.06.675   DOI
12 Y. Li, L. Zhang, X. Zhong, A. Windle, "Synthesis of high purity single-walled carbon nanotubes from ethanol by catalytic gas flow CVD reactions", Nanotechnology, Vol.18. No.22, May 2007. DOI:https://doi.org/10.1088/0957-4484/18/22/225604
13 F.Garci, Y. Ma, I. Rodriguez-Ramos, A. Ruiz, "High purity hydrogen production by low temperature catalytic ammonia decomposition in a multifunctional membrane reactor", Catalysis Communications, Vol.9, No.3, pp.482-486, Mar. 2008. DOI:https://doi.org/10.1016/j.catcom.2007.07.036   DOI
14 C. Xu, X. Xu, J. Su, Y, Ding, "Research on unsupported nanoporous gold catalyst for CO oxidation", Journal of Catalysis, Vol.252, No.2, pp.243-248, Dec. 2007. DOI:https://doi.org/10.1016/j.jcat.2007.09.016   DOI
15 K. TODA, T. SHIMIZU, I. SANEMASA, "Double Schottky Diode-Type Gas Sensor for Discriminative Detection of Phosphine and Hydrogen", Analytical Sciences, Vol.11, pp.317-318, Nov. 1995. DOI:https://doi.org/10.2116/analsci.11.317   DOI
16 T. Itoh, N. Izu, T. Akamatsu, W. Shin, Y. Miki, "Elimination of Flammable Gas Effects in Cerium Oxide Semiconductor-Type Resistive Oxygen Sensors for Monitoring Low Oxygen Concentrations", Sensors, Vol.15, No.4, pp.9427-9437, Apr. 2015. DOI:https://doi.org/10.3390/s150409427   DOI
17 S. Campbell, Y. Qu1, J. Major, D. Lararde, C. Labbe, "Direct evidence of causality between chemical purity and band-edge potential fluctuations in nanoparticle ink-based $Cu_{2}ZnSn(S,Se)_{4}$ solar cells", Journal of Physics D: Applied Physics, Vol.52, pp.11, Jan. 2019. DOI:https://doi.org/10.1088/1361-6463/aafe60
18 R. R.-N. Jens, S. Jens, K. N. Jens, "Hydrogen and synthesis gas by steam- and $CO_{2}$ reforming", Advances in Catalysis, Vol.47, pp.65-139, Apr. 2002. DOI:https://doi.org/10.1016/S0360-0564(02)47006-X
19 D. Suh, T. Park, J. Kim, K. Kim, "Nickel-alumina aerogel catalysts prepared by fast sol-gel synthesis", Journal of Non-Crystalline Solids, Vol.225, pp.168-172, Apr. 1998. DOI:https://doi.org/10.1016/S0022-3093(98)00039-8   DOI
20 K. Nagaoka, K. Sato, S. Fukuda, H. Nishiguchi, Y. takita, "Oxidation of $Rh/Ce_{0.5}Zr_{0.5}O_{2}$ reduced under mild conditions as an initiator of n-butane oxidative reforming at ambient temperature", Catalysis Communications, Vol.8, pp.1807-1810, Nov. 2007. DOI:https://doi.org/10.1002/cssc.200900194   DOI
21 S. Xu, X. Wang, "Highly active and coking resistant $Ni/CeO_{2}-ZrO_{2}$ catalyst for partial oxidation of methane", FUEL, Vol.84, No.5, pp. 563-567, Mar. 2005. DOI:https://doi.org/10.1016/j.fuel.2004.10.008   DOI
22 M. King, T. Lee, J. Lee, "Influence of $Ni/CeO_{2}-ZrO_{2}$ catalysts on Methane Autothermal reforming", Korean Chemical Engineering Research, Vol.47, No1, pp. 17-23, Feb. 2009.
23 M. G. Calvo, C. J. Gonzalez, B. Rivas, J. I. G. Ortiz, R. L. Fonseca, "Novel Nickel Aluminate-Derived Catalysts Supported on Ceria and Ceria-Zirconia for Partial Oxidation of Methane", Industrial & Engineering Chemistry Research, Vol.56, pp.6186-6197, May 2017. DOI:https://doi.org/10.1021/acs.iecr.7b00986   DOI
24 S. Tada, M. Yokoyama, R. Kikuchi, T. Haneda, H. Kameyama, "$N_{2}O$ Pulse Titration of $Ni/{\alpha}-Al_{2}O_{3}$ Catalysts: A New Technique Applicable to Nickel Surface-Area Determination of Nickel-Based", Catalysts, The Journal of Physical Chemistry C, Vol.117, pp. 14652-14658, Jun. 2013. DOI:https://doi.org/10.1021/jp404291k   DOI
25 S. Roscher, R. Hoffmann, O. Ambacher, "Determination of the graphene-graphite ratio of graphene powder by Raman 2D band symmetry analysis", Analytical Methods, Vol.11. pp.1224-1228, Jan. 2019. DOI:https://doi.org/10.1039/C8AY02619J   DOI