• 제목/요약/키워드: high-pressure emulsification

검색결과 11건 처리시간 0.031초

Influence of Xanthan, Emulsification Temperature, and Environmental Stresses on the Preparation of Water-in-Corn Oil Emulsions Droplets Coated by Polyglycerol Polyricinoleate

  • Surh, Jeong-Hee
    • Food Science and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.299-306
    • /
    • 2009
  • The purpose of this study was to prepare stable water-in-corn oil (W/O) emulsion droplets coated by polyglycerol polyricinoleate (PGPR). W/O emulsions (20 wt% aqueous phase, 80 wt% oil phase containing 8 wt% PGPR) were produced by high pressure homogenization (Emulsions 1), however, appreciable amount of relatively large water droplets (d>$10{\mu}m$) were found. To facilitate droplet disruption, viscosity of each phase was adjusted: (i) increased the viscosity of aqueous phase by adding 0.1 wt% xanthan (Emulsions 2); (ii) decreased the viscosity of oil phase and aqueous phase by heating them separately at $50^{\circ}C$ for 1 hr immediately before emulsification (Emulsions 3). Homogenizing at the elevated temperature clearly led to a smaller water droplet size, whereas xanthan neither improved nor adversely affected on the microstructures of the emulsions. In addition, the Emulsions 3 had good stability to droplet aggregation under shearing stress, thermal processing, and long term storage.

고압유화 공정이 적용된 화장품의 피부흡수 및 피부 미백효과 연구 (A Study on Skin Permeability and Skin Whitening Effect of High Pressure Emulsification Processed Cosmetic)

  • 장수임;이소미;백병열;한지연;김은주;이해광
    • 대한화장품학회지
    • /
    • 제43권3호
    • /
    • pp.189-194
    • /
    • 2017
  • 피부는 외부의 유해한 인자로부터 신체를 보호하는 장벽 기능을 한다. 이러한 피부의 장벽기능은 유효 물질이 피부에 투과되기 어려움이 있다. 본 연구에서는 피부의 투과도를 높이기 위해 입자의 크기를 줄이는 고압 유화 공정을 거친 시료를 제작하여 피부에 도포한 후 유효 물질의 투과도를 비침습적으로 측정하고자 하였다. 유효물질인 niacinamide는 고압유화 공정을 거친 시험시료가 그렇지 않은 대조시료에 비해 1.56배 많이 흡수되었으며 tape-stripping을 통해 떼어낸 각질의 여섯 번째 층까지 유의하게 많이 흡수되어 더 깊게 투과되었음을 확인하였다. 또한 niacinamide가 함유된 시험 시료의 미백 효능 평가를 사용 전과 사용 6주 후 평가하였을 때 색소침착 부위와 비색소침착부위에서 유의하게 피부색 명도값이 개선된 것을 확인하였다. 본 연구를 통해 각질 tape-stripping을 통해 비침습적으로 시료의 투과도를 시각적 및 정량적으로 확인할 수 있으며 고압유화 공정으로 입자의 크기를 줄인 시료는 유효물질의 피부 투과도가 높아 피부 미백에 도움을 주는 것으로 사료된다.

Retracted article: Effect of High Pressure Homogenization on the Physicochemical Properties of Natural Plant-based Model Emulsion Applicable for Dairy Products

  • Park, Sung Hee;Min, Sang-Gi;Jo, Yeon-Ji;Chun, Ji-Yeon
    • 한국축산식품학회지
    • /
    • 제35권5호
    • /
    • pp.630-637
    • /
    • 2015
  • In the dairy industry, natural plant-based powders are widely used to develop flavor and functionality. However, most of these ingredients are water-insoluble; therefore, emulsification is essential. In this study, the efficacy of high pressure homogenization (HPH) on natural plant (chocolate or vanilla)-based model emulsions was investigated. The particle size, electrical conductivity, Brix, pH, and color were analyzed after HPH. HPH significantly decreased the particle size of chocolate-based emulsions as a function of elevated pressures (20-100 MPa). HPH decreased the mean particle size of chocolate-based emulsions from 29.01 μm to 5.12 μm, and that of vanilla-based emulsions from 4.18 μm to 2.44 μm. Electrical conductivity increased as a function of the elevated pressures after HPH, for both chocolate- and vanilla-based model emulsions. HPH at 100 MPa increased the electrical conductivity of chocolate-based model emulsions from 0.570 S/m to 0.680 S/m, and that of vanilla-based model emulsions from 0.573 S/m to 0.601 S/m. Increased electrical conductivity would be attributed to colloidal phase modification and dispersion of oil globules. Brix of both chocolate- and vanilla-based model emulsions gradually increased as a function of the HPH pressure. Thus, HPH increased the solubility of plant-based powders by decreasing the particle size. This study demonstrated the potential use of HPH for enhancing the emulsification process and stability of the natural plant powders for applications with dairy products.

Heat-set 윤전 잉크의 유화가 인쇄 적성에 미치는 영향 (The Effects of the Heat-set web Ink Emulsification on Printability)

  • 하영백;최재혁;이원재;오성상
    • 한국인쇄학회지
    • /
    • 제28권2호
    • /
    • pp.31-44
    • /
    • 2010
  • Ever since the introduction of offset lithography, an operator have looked for ways to improve the process by reducing need for dampening solution. Lithography like off-set printing is processed using the repellent properties between water and oil, so all inks for lithography printing must work with dampening solution. The dampening solution may cause the emulsification of ink by the printing pressure in the printing nip. Emulsified ink changed viscosity, tack and causes problems such as bad transfer, uniform density and printed mottle. For a high quality web printing, we studied the effect of emulsified heat-set web inks on the printability, such as amount of ink transfer, printed density and uniformity. For this study, we were carried out by using IGT printability tester C1. For determination of ink properties using the spread meter and Thwing Albert Ink-o-meter, and using the densitometer and image analysis for printed quality determination. The experimental results of this study, we look forward to can be used as the basis for improve of the web print quality.

Recombinant Human Epidermal Growth Factor (rhEGF)-loaded Solid Lipid Nanoparticles: Fabrication and Their Skin Accumulation Properties for Topical rhEGF Delivery

  • Hwang, Hee-Jin;Han, Sunhui;Jeon, Sangok;Seo, Joeun;Oh, Dongho;Cho, Seong-Wan;Choi, Young Wook;Lee, Sangkil
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2290-2294
    • /
    • 2014
  • For the present study, rhEGF was encapsulated into solid lipid nanoparticles (SLNs). The SLNs were prepared by the $W_1/O/W_2$ double emulsification method combined with the high pressure homogenization method and the physical properties such as particle size, zeta-potential and encapsulation efficiency were measured. The overall particle morphology of SLNs was investigated using a transmission electron microscopy (TEM). The percutaneous skin permeation and accumulation property of rhEGF was evaluated using Franz diffusion cell system along with confocal laser scanning microscopy (CLSM). The mean particle size of rhEGF-loaded SLNs was $104.00{\pm}3.99nm$ and the zeta-potential value was in the range of -$36.99{\pm}0.54mV$, providing a good colloidal stability. The TEM image revealed a spherical shape of SLNs about 100 nm and the encapsulation efficiency was $18.47{\pm}0.22%$. The skin accumulation of rhEGF was enhanced by SLNs. CLSM image analysis provided that the rhEGF rat skin accumulation is facilitated by an entry of SLNs through the pores of skin.

초음파 검사에 의한 수중의 살균처리 (Disinfection of Water by Ultrasonic Irradiation)

  • 손종렬;유병성
    • 환경위생공학
    • /
    • 제14권1호
    • /
    • pp.54-61
    • /
    • 1999
  • The industrial techniques of ultrasound have been used in the various fields, such as cleaning, medical surgery, emulsification, cell disruption etc. Especially the application of cell disruption was interested in the field of disinfection process in water by ultrasonic irradiation. It has been recognized that the ultrasounds are irradiated in aqueous solution, cavitation bubbles are generated and shock waves of high temperature and pressure are emitted as the bubbles are developed and finally broken, which function as a energy source to promote reaction efficiencies of various kinds of chemical reactions such as disinfection reaction in water. Therefore, this study was performed to apply the ultrasound for the disinfection method of infected drinking raw water and to discuss the limiting factors such as pH, sample volume and reaction temperature influenced on the removal efficiency of E. coli from experimental analysis of the results obtained in bench-scale plant. For the experiments to measure the influence of reaction parameters in the ultrasonic disinfection process, escalated reactivity of aqueous solutions was excellent when pH in aqueous solution was low, and sample volume was small. On the contrary, the reactivity of disinfection became elevated when reaction temperature was high. It was found that the rate constant of disinfection reaction was applied by Chick's law, reaction kinetics of Chick's law was irreversible and pseudo-first order at all the tested conditions.As a conclusion it appeared that the technology using ultrasonic irradiation can be applied to the treatment of disinfection in infected water which are difficult to be treated by conventional methods.

  • PDF

고분자 분산제를 이용한 Core-shell 수성 감압점착제 (Waterborne Core-shell Pressure Sensitive Adhesive (PSA) Based on Polymeric Nano-dispersant)

  • 이진경;진인주
    • 접착 및 계면
    • /
    • 제17권3호
    • /
    • pp.89-95
    • /
    • 2016
  • 유연한 식품포장필름에 사용되고 있는 드라이 라미네이션용 유성접착제를 대체하기 위해, 고분자 분산제를 사용하여 유화하는 방법으로 수성 감압점착제를 친환경적으로 설계하였다. 유화중합에서 널리 사용하는 저분자량의 계면활성제는 물성의 변수로 작용해 왔다. 본 연구에서는 먼저 용액중합으로 polymeric nano-dispersant (PND)를 제조하고, 이 PND 입자들의 분산제를 micelle seed로 이용하여 core-shell grafted acrylic 점착제를 합성하였다. 이때 입자의 바깥층(shell)과 입자내층(core)의 $T_g$를 달리하여 얇은 필름의 점착조건인 초기접착력과 유지력의 균형을 이루도록 설계하였다. 최적화된 시험군 합성 점착제의 물성을 국내외 제조사에서 개발된 연구시료들과 비교분석하여, 점착제로서의 물성을 검토하였다. 물성 비교 결과, 본 연구에서 설계 합성한 저분자량의 계면활성제를 대체 사용한 고분자 나노분산제 기반 core-shell 점착제가 연포장에 적합한 점착물성을 나타냄을 확인하였다.

반응표면분석법을 활용한 Glabridin 함유 나노에멀젼의 피부흡수 향상을 위한 제형 최적화 연구 (A Study on Formulation Optimization for Improving Skin Absorption of Glabridin-Containing Nanoemulsion Using Response Surface Methodology)

  • 김세연;김원형;윤경섭
    • 대한화장품학회지
    • /
    • 제49권3호
    • /
    • pp.231-245
    • /
    • 2023
  • 화장품 업계에서는 미백, 주름, 항산화, 항노화 등 기능성 화장품의 신소재 개발과 더불어 실제로 피부에 적용 시 피부흡수율을 높이는 기술이 중요하다. 이에 본 연구에서는 실험설계법인 반응표면분석법(RSM)을 활용하여 나노에멀젼 제형을 최적화하고자 하였다. Glabridin을 활성성분으로 하여 고압유화 방법으로 나노에멀젼을 제조하였으며, 최종적으로 최적화한 나노에멀젼의 피부흡수율을 평가하였다. RSM 인자로서 계면활성제 함량, 콜레스테롤 함량, 오일 함량, 폴리올 함량, 고압유화 압력, 고압유화 횟수를 달리하여 나노에멀젼을 제조하였다. 그 중 입자 크기에 가장 큰 영향을 미치는 인자인 계면활성제 함량, 오일 함량, 고압유화 압력, 고압유화 횟수를 독립변수로 하였고, 나노에멀젼의 입자 크기와 피부흡수율을 반응변수로 하였다. 중심점 5 회 반복실험을 포함하여 총 29 회 실험이 무작위로 수행되었으며, 제조된 나노에멀젼의 입자 크기와 피부흡수율을 측정하였다. 그 결과를 바탕으로 최소 입자 크기, 최대 피부흡수율을 갖는 제형을 최적화하였으며, 계면활성제 함량 5.0 wt%. 오일 함량 2.0 wt%, 고압유화 압력 1,000 bar, 고압유화 횟수 4 pass를 최적 조건으로 도출하였다. 최적 조건으로 제조한 나노에멀젼의 물성으로 입자 크기는 111.6 ± 0.2 nm, 다분산지수는 0.247 ± 0.014, 제타전위는 -56.7 ± 1.2 mV로 측정되었다. 나노에멀젼과 일반 에멀젼 피부흡수 시험 결과, 24 h 후 나노에멀젼의 누적 투과량은 79.53 ± 0.23%이며, 대조군으로서 에멀젼의 누적 투과량은 66.54 ± 1.45%로 나노에멀젼이 에멀젼보다 13% 높았다.

Oil in Water 에멀전에서 오일 입자 크기가 분산 안정성에 미치는 영향 (Effect of oil particle size on dispersion stability in oil in water emulsion)

  • 황보선애;추민철;문창권
    • 한국입자에어로졸학회지
    • /
    • 제13권3호
    • /
    • pp.133-139
    • /
    • 2017
  • In this paper, we proposed an emulsification method without using an emulsifier and investigated the effects of particle size distribution in fluids on dispersion stability. Surfactant-free oil in water emulsion was prepared with 1 % (w/w) of olive oil by using high speed agitation, high pressure and ultrasonic dispersion methods. The particle size, microscopic observation, and dispersion stability of each sample were evaluated and dispersion stability according to various dispersion methods was compared. As a result, the emulsion dispersed by the ultrasonic dispersion method showed the smallest particle size and uniform distribution of $0.07{\sim} 0.3{\mu}m$ and was the most stable in a 7 days stability evaluation. In the above experiment, four olive oil emulsions having different particle sizes were prepared using ultrasonic dispersion technology that was capable of producing stable emulsions. The dispersion stability of each samples with oil droplet sizes of (A) 0.1 to $0.5{\mu}m$, (B) 0.3 to $4{\mu}m$, (C) 1 to $10.5{\mu}m$ and (D) 2 to $120{\mu}m$, was observed for 7 days, and the relationship between the stability and performance was studied. Emulsion (A) with particle size less than $0.5{\mu}m$ displayed the dispersion stability showing below 5 % change in a 7 days stability evaluation. In the case of (B), (C), and (D) that had larger particle than $0.5{\mu}m$, the changes of dispersion stability were 10 %, 13 % and 35 % respectively. From these results, it was proved that dispersion stability of emulsion with uniform particle size of $0.5{\mu}m$ or less was confirmed to be very stable.

유화법과 분무법에 의해 제조된 경구백신용 알긴산 마이크로스피어의 평가 (Evaluation of Alginate Microspheres Prepared by Emulsion and Spray Method for Oral Vaccine Delivery System)

  • 장혁;지웅길;맹필재;황성주
    • Journal of Pharmaceutical Investigation
    • /
    • 제31권4호
    • /
    • pp.241-256
    • /
    • 2001
  • Alginate microspheres, containing fluorescein isothiocyanate-bovine serum albumin (FITC-BSA) or green fluorescent protein (GFP) were prepared and used as a model drug to develop the oral vaccine delivery system. The alginate microspheres were coated with poly-L-lysine or chitosan. Two methods, w/o-emulsion and spray, were used to prepare alginate microspheres. To optimize preparation conditions, effects of several factors on the particle size and particle morphology of microsphere, and loading efficiency of model antigen were investigated. In both preparation methods, the particle size and the loading efficiency were enhanced when the concentration of sodium alginate increased. In the w/o-emulsion preparation method, as the concentration of Span 80 was increased from 0.5% to 2%, the particle size was decreased, but the loading efficiency was increased. The higher the emulsification speed was, the smaller the particle size and loading efficiency were. The concentration of calcium chloride did not show any effect on the particle size and loading efficiency. In the spray preparation method, the particle size was increased as the nozzle pressure $(from\;1\;kgf/m^2\;to\;3\;kgf/m^2)$ and spray rate was raised. Increasing calcium chloride concentration (<7%) decreased the particle size, in contrast to no effect of calcium chloride concentration on the w/o-emulsion preparation method. Alginate microspheres prepared by two methods were different in the particle size and loading efficiency, the particle size of microspheres prepared by the spray method was about $2-6\;{\mu}m$, larger than that prepared by the w/o emulsion method $(about\;2{\mu}m)$, and the loading efficiency was also higher with spray method. Furthermore, drying process for the microspheres prepared by the spray was simpler and easier, compared with the w/o emulsion preparation. Therefore, the spray method was chosen to prepare alginate microspheres for further experiments. Release pattern of FITC-BSA in alginate microspheres was evaluated in simulated intestinal fluid and PBS (phosphate buffered saline). Dissolution rate of FITC-BSA from alginate/chitosan microsphere was lower than that from alginate microsphere and alginate/poly-L-lysine microsphere. By confocal laser scanning microscope, it was revealed that alginate/FITC-poly-L-lysine microspheres were present in close apposition epithelium of the Peyer's patches of rabbits following inoculation into lumen of intestine, which proved that microspheres could be taken up by Peyer's patch. In conclusion, it is suggested that alginate microsphere prepared by spray method, showing a particle size of & $10\;{\mu}m$ and a high loading efficiency, can be used as a model drug for the development of oral vaccine delivery system.

  • PDF